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Abstract— Assistive robots have the potential to help people
perform everyday tasks. However, these robots first need to
learn what it is their user wants them to do. Teaching assistive
robots is hard for inexperienced users, elderly users, and users
living with physical disabilities, since often these individuals
are unable to show the robot their desired behavior. We know
that inclusive learners should give human teachers credit for
what they cannot demonstrate. But today’s robots do the
opposite: they assume every user is capable of providing any
demonstration. As a result, these robots learn to mimic the
demonstrated behavior, even when that behavior is not what
the human really meant! Here we propose a different approach
to reward learning: robots that reason about the user’s demon-
strations in the context of similar or simpler alternatives. Unlike
prior works — which err towards overestimating the human’s
capabilities — here we err towards underestimating what the
human can input (i.e., their choice set). Our theoretical analysis
proves that underestimating the human’s choice set is risk-
averse, with better worst-case performance than overestimating.
We formalize three properties to generate similar and simpler
alternatives. Across simulations and a user study, our resulting
algorithm better extrapolates the human’s objective. See the
user study here: https://youtu.be/RgbH2YULVRo.

I. INTRODUCTION

Imagine that you’re using an assistive robot arm, and you
want to teach this arm to carry a cup of coffee upright. You
control the robot’s motion using a joystick [1]–[3]. The robot
has many degrees-of-freedom, and — as you teleoperate the
arm to provide your demonstration — you must carefully
orchestrate each joint to keep the coffee upright. It’s possible
for a dexterous, experienced human to teleoperate this task
correctly. But you’re not as skilled with the control interface:
because of your limitations the best you can do is to avoid
turning over the cup and spilling all the coffee (see Fig. 1).

We refer to the set of possible demonstrations that a given
human can show the robot as the human’s choice set [4],
[5]. Robots learn what the human wants by reasoning about
the human’s actual demonstrations in the context of this
choice set. For instance, if the human’s demonstrations keep
the coffee more vertical than the alternatives within their
choice set, it’s likely that the human values keeping the
coffee upright. Importantly, when we interact with robots, our
choice sets are inherently constrained by our own physical
and cognitive capabilities — and these limitations vary from
one person to another [6]–[8]. Take our example: although
an expert is able to show a trajectory with the coffee roughly
upright, the best we can do is to keep the cup from flipping
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over. Uncertainty over what this choice set is makes it hard
for the robot to learn: did we tilt the coffee because we meant
to, or because we were unable to keep it upright?

Existing work on learning human objectives from demon-
strations often ignores user limitations, and assumes that
the human’s choice set includes every demonstration that is
consistent with the robot’s dynamics [9]–[13]. This results
in robots that learn to match your demonstrated behavior, so
that if all your demonstrations spill some coffee, the robot
also learns to spill. We explore the opposite perspective:
Inclusive robots should assume that the human may have
limitations, and can only show alternative behaviors that

are similar to or simpler than their actual demonstrations.
Returning to our coffee example, now the robot narrows
down its estimate of the human’s choice set to only include
the observed human trajectories and sparse and noisy alter-
natives. Compared to these alternatives, our actual demon-
strations better keep the cup closer to vertical. Here the robot
extrapolates what we really meant, despite the fact that we
spilled coffee in all our demonstrations (see Fig. 1).

Overall, we make the following contributions:
Underestimating vs. Overestimating Choice Sets. Robots
will inevitably get the human’s choice set wrong. We theo-
retically compare overestimating the human’s choice set (i.e.,
assuming users can provide any demonstration) to underes-
timating the human’s choice set (i.e., users can only provide
a few demonstrations). We prove that underestimating is a
risk-averse approach with better worst-case learning.
Generating Choice Sets from Demonstrations. How does
the robot get its estimate of a human’s choice set? Our analy-
sis finds that waiting for human teachers to demonstrate their
choice set is intractable. To address this, we formalize three
properties that robots can leverage to generate trajectories
that are similar to or simpler than the human’s actual choices.
Conducting a User Study. We compare our inclusive ap-
proach to state-of-the-art baselines. Our results suggest that
robots which err towards underestimating the human’s choice
set better extrapolate the human’s underlying objective.

II. RELATED WORK

Application – Assistive Robots. Assistive robots, such as
wheelchair-mounted robot arms, promise to improve the
autonomy and independence of users living with physical
disabilities [14]. However, people’s ability to control assistive
robots is often restricted, both by their own physical impair-
ments and the teleoperation interfaces they leverage [1]–[3],
[15]–[17]. Expecting all users to produce the same demon-
strations is unfair [18]. We therefore develop a personalized
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Fig. 1. (Left) User teaches an assistive robot arm to carry coffee upright. Because of their limitations, this user’s best demonstration unintentionally
tilts the cup. (Middle) When the robot ignores these limitations — and compares the human’s input to any trajectory — it learns to match the human’s
demonstration and also spill coffee. To make learning more inclusive, we instead compare the human’s demonstration to simpler and similar trajectories.
(Right) Because these alternatives spill more coffee than the human, the robot now extrapolates what the user really wanted: keeping the coffee upright.

approach, where the robot learns from each user by placing
their demonstrations in the context of similar behaviors.

Learning Rewards from Demonstrations. Prior work stud-
ies how assistive arms and other robots can learn from
human demonstrations. Inverse reinforcement learning (IRL)
infers what the user wants — i.e., their underlying reward
function — from their demonstrated trajectories. To do this,
the robot searches for the reward function that makes the
human’s trajectories appear roughly optimal [9]. Crucially,
today’s methods assume that the human is optimizing over all
possible trajectories; accordingly, when human demonstrates
suboptimal behavior, the robot thinks this behavior is better
than every other option, and learns the reward function that
best reproduces what the human demonstrated [10]–[13].

Recent research explores how this learning model misses
out on the way humans actually behave [19]–[21]. Most rele-
vant are [4] — where the authors formalize choice sets in re-
ward learning — and [5] — where the authors experimentally
compare different classes of choice set misspecification. We
also build upon inverse reinforcement learning, but develop
a formalism for generating smaller, constrained choice sets
from the human’s demonstrations.

Outperforming Imperfect Demonstrations. Our goal in
generating these choice sets is for robots to learn rewards
which better align with what the human wants than the
human’s demonstrations. Other works outperform imperfect
and suboptimal demonstrations by eliciting additional types
of human feedback [22]–[26]. We do not gather additional
feedback; instead, our approach is most similar to [27]–
[29]. Here the robot considers noisy perturbations of the
human’s original demonstrations, and extrapolates a reward
function which maximizes the difference between the hu-
man’s demonstrations and these noisy alternatives. Viewed
within our formalism, the alternative demonstrations form
the human’s choice set, and leveraging noisy perturbations
becomes one instance of generating this set.

III. PROBLEM STATEMENT

Let’s return to our motivating example, where we are
teleoperating an assistive robot arm, and want to teach this
arm to hold coffee upright. Each time we guide the robot
through the process of picking up, carrying, and putting down
our coffee cup, we show the robot a trajectory ξ ∈ ΞH. Here
ξ is a sequence of robot state-action pairs, and ΞH is our

choice set: i.e., the set of all trajectories we are capable
of showing to the robot. Of course, the robot does not know
what our choice set is — we could be an expert user, capable
of keeping the cup perfectly vertical, or an inexperienced
user, who struggles to keep the cup from flipping over. The
robot therefore works with ΞR, an estimate of ΞH.

Over repeated interactions we show the robot N trajecto-
ries from our choice set. Given all of these user demonstra-
tions D = {ξ1, ξ2, . . . , ξN}, the robot recovers our reward
function rθ(ξ)→ R, i.e., what we want the robot to optimize
for across a trajectory1. More formally, the robot tries to infer
rθ (what we value) given D (the trajectories we have shown)
and ΞR (the trajectories the robot thinks we can show).

Bayesian Inference. Let belief b denote the robot’s learned
probability distribution over rθ. Applying Bayes’ Theorem:

b(rθ) = P (rθ | D,ΞR) ∝ P (D | rθ,ΞR) · P (rθ) (1)

where P (rθ) is the robot’s prior over the human’s reward.
Since we assume the human’s demonstrations are condition-
ally independent [9], [24], Equation (1) simplifies to:

b(rθ) ∝ P (rθ)
∏
ξ∈D

P (ξ | rθ,ΞR) (2)

The crucial term is P (ξ | rθ,ΞR), the likelihood of observing
ξ given that the human has reward rθ and choice set ΞR.
Within robot learning [11] and cognitive science [30], this is
commonly written using a Boltzmann-rational model:

P (ξ | rθ,ΞR) =
exp (β · rθ(ξ))∑

ξ′∈ΞR
exp (β · rθ(ξ′))

(3)

Intuitively, this model asserts that a rational human picks the
trajectory from their choice set that noisily maximizes their
reward, and the hyperparameter β ≥ 0 captures how close-
to-rational the human is. Substituting this likelihood function
into Equation (2), we arrive at the robot’s learning rule:

b(rθ) ∝
exp (β ·

∑
ξ∈D rθ(ξ))(∑

ξ′∈ΞR
exp (β · rθ(ξ′))

)N · P (rθ) (4)

Importance of Choice Sets. When the robot misunderstands
the human’s choice set (i.e, ΞR 6= ΞH) this learning rule may

1In our experiments we are consistent with previous work on inverse
reinforcement learning and use rθ(ξ) = θ · Φ(ξ), where Φ(ξ) ∈ Rk are
known features and θ ∈ Rk are unknown reward weights [4], [9]–[11].



spectacularly fail. Imagine that the robot from Fig. 1 has a
uniform prior over two opposite rewards that optimize for
staying upright (rupright) or spilling coffee (rspill). As an
inexperienced user the best we can do is to spill at least
75% of the coffee, and we demonstrate this ξ to the robot
— hoping the robot will recognize our limitations and learn
rupright. However, the robot overestimates our capabilities.
Let ΞR include a full spectrum of trajectories, from spilling
the entire cup to spilling none at all: importantly, our ξ pours
more coffee than most of these alternatives in ΞR. Hence, if
we apply Equation (4) with this choice set, for any β > 0 the
robot believes rspill is actually what we wanted to optimize.
The robot gets it wrong here because it incorrectly estimates
what trajectories the human can input.

IV. THEORETICAL ANALYSIS

The problem is that robots will inevitably get the human’s
choice set wrong. This is especially true in assistive robotics,
where physical and control limitations vary greatly from one
user to another [3]. If we are doomed to mistake ΞH, on
which side should we err? One option is to overestimate the
choices that the human can make, such that ΞR ⊇ ΞH. This
is traditionally done in inverse reinforcement learning, where
ΞR includes all feasible trajectories [10]–[13]. By contrast,
our insight is to err towards underestimating the human’s
capabilities, such that ΞR ⊆ ΞH. In this section we analyze
the pros and cons of each approach.

Assumptions. To better understand how the system behaves
at the limit, we assume that the human is perfectly rational,
and always inputs the ξ ∈ ΞH that maximizes their reward
(i.e., β → ∞). We further assume that the human’s choice
ξ is an element of ΞR: because the robot observes ξ prior
to learning, it is trivial to add ξ to ΞR if it is not already
included. Finally, for the sake of clarity, we assume that the
mapping from trajectories ξ to rewards rθ(ξ) is injective.

In practice, putting these assumptions together with Equa-
tion (3) implies that either P (ξ | rθ,ΞR) = 1 (if ξ ∈ ΞR
maximizes rθ) or P (ξ | rθ,ΞR) = 0 (if ξ ∈ ΞR does not
maximize rθ). These assumptions are purely for analysis, and
are removed in our simulations and user study.

A. Risk-Sensitivity and Learning

In the context of learning with Equation (4), one definition
of risk relates to confidence. A risk-seeking robot becomes
confident in its estimate of rθ after just a few demonstrations,
while a risk-averse robot remains uncertain even when many
demonstrations are available. We quantify this confidence as
the Shannon entropy over the robot’s belief b [31].

But how confident should the robot actually be? Our point
of reference is an ideal leaner that knows ΞH. This is the
gold standard, because if we knew ΞH, we’d always have the
right context for learning from the human’s demonstrations.
We therefore define risk as the difference between the robot’s
actual entropy and the gold standard entropy. A risk-seeking
robot has less entropy than the gold standard (indicating it is
overly confident in its estimate) while a risk-averse robot has

more entropy than the gold standard (indicating it is being
unnecessarily conservative).

We find that how we estimate the choice set affects risk:

Proposition 1. Robots which overestimate the human’s ca-
pabilities are risk-seeking, while robots which underestimate
the human’s choice set are risk-averse.

Proof. Let ξ ∈ D be an observed human demonstration.
When the robot overestimates the human’s capabilities,
ΞR ⊇ ΞH. This increases the denominator of Equation (3),
so that P (ξ | rθ,ΞR) ≤ P (ξ | rθ,ΞH) for all r. But from
our assumptions we know that P (ξ | rθ,ΞR) is either 0 or
1. Thus, ΞR ⊇ ΞH concentrates the robot’s belief b around
the same or fewer rewards than if ΞR = ΞH.

Conversely, if the robot underestimates the human’s capa-
bilities, ΞR ⊆ ΞH. Removing choices decreases the denomi-
nator of Equation (3), so that P (ξ | rθ,ΞR) ≥ P (ξ | rθ,ΞH)
for all rθ. Hence, ΞR ⊆ ΞH distributes the robot’s belief b
around the same or more rewards than if ΞR = ΞH. �

To see this in action let’s return to our motivating example,
where we input a trajectory which spills some coffee. If
the robot overestimates our capabilities, the robot becomes
confident that we are optimizing for spilling, since there are
better trajectories to choose if we preferred to keep the cup
upright. But a robot that underestimates our capabilities is not
as quick to eliminate other explanations. This robot realizes
that the trajectory we have shown is our best choice if we
intend to spill some coffee, as well as our best choice for
spilling no coffee at all. Hence, the risk-averse robot thinks
both of these rewards are still likely.

B. Worst-Case Learning

Next let’s look at the worst that could happen when we get
the human’s choice set wrong. We’ll think about this error in
terms of Equation (4), where the robot learns the likelihood
of each reward. In the best case the robot learns the human’s
true reward rθ, so that b(rθ) = 1.

The worst-case depends on how we estimate ΞH:

Proposition 2. In the worst case, robots that overestimate
the human’s capabilities learn the wrong reward.

Proof. The rational human chooses ξ ∈ ΞH to maximize their
reward rθ. But ΞR ⊃ ΞH, and in ΞR there might be another
trajectory ξ′ where rθ(ξ′) > rθ(ξ). So the human’s choice
ξ does not maximize reward for rθ; instead, ξ ∈ ΞR is the
best choice for reward r′θ. Here b(r′θ) = 1 and b(rθ) = 0. �

Proposition 3. In the worst case, robots that underestimate
the human’s capabilities learn nothing from demonstrations.

Proof. The rational human chooses ξ ∈ ΞH to maximize rθ.
But ΞR ⊂ ΞH only contains this single choice, ΞR = {ξ}.
So while ξ ∈ ΞR is the best choice for reward rθ, it is also
the best choice for all other rewards. Now P (ξ | rθ,ΞR) = 1
for every reward, and b(rθ) = P (rθ). �

We can intuitively connect this worst-case performance to
our earlier analysis of risk-sensitivity. Robots that overesti-
mate the human’s capabilities are risk-seeking, and quickly
become overconfident in the reward they have learned. When



these risky robots get it wrong — for instance, thinking we
want to spill the coffee — they commit to their mistakes,
resulting in complete confidence in the wrong reward. Robots
that underestimate the human’s choice set err in the opposite
direction. These risk-averse robots play it safe, and main-
tain several possible explanations for the human’s behavior.
When these conservative robots are overly cautious — e.g.,
severely underestimating our capabilities — they ignore the
information our demonstrations actually contain.

C. Can We Rely on Human Teachers?

To avoid this worst-case performance, one option is to rely
on the human to show the robot their choice set. Every time
the human teleoperates the robot along a trajectory ξ, they
are showing the robot another element of ΞH. A naïve robot
may assume that — given enough time — the human will
demonstrate all the trajectories they are capable of inputting.
Using this wait-and-see approach, the robot sets ΞR = D.

The problem here is that the user isn’t picking ξ to convey
their choice set; instead, the human is inputting trajectories
to teach the robot. Referring back to Equation (3), the
human chooses ξ ∈ ΞH to noisily maximize their reward r.
When users follow this Boltzmann-rational model, passively
waiting for the user to show a diverse set of choices from
ΞH becomes prohibitively time consuming:

Proposition 4. If we normalize the rewards over ΞH between
0 and 1, the probability that the human will show a minimal
reward trajectory ξ in N demonstrations is bounded by:

P (ξ ∈ D) ≤ 1−

[
|ΞH | − 2 + expβ

|ΞH | − 1 + expβ

]N
(5)

Proof. We seek to maximize Equation (3) when rθ(ξ) = 0
and there exists at least one ξ′ where rθ(ξ′) = 1. To do this
we minimize the denominator, which occurs when rθ(ξ′) = 1
only once and 0 otherwise. Now P (ξ | rθ,ΞH) = 1/(expβ+
|ΞH | − 1), and the probability of not picking ξ during the
current interaction is 1− P (ξ | rθ,ΞH). �

Jumping back to the motivating example, let’s say there are
|ΞH | = 2 different types of trajectories we can demonstrate:
either tilting the mug or completely flipping it over. For a
Boltzmann-rational human teacher with β = 5, even if the
robot waits for 50 demonstrations, there is at most a 29%
likelihood that the human demonstrates flipping the cup over.
Hence, when humans are optimizing for teaching, we cannot
rely on them to convey their choice set to the robot.

V. GENERATING THE CHOICE SET

The last section explored how underestimating or overesti-
mating the human’s choice set affects reward learning — but
how does the robot estimate this choice set in the first place?
Although we can’t rely on the human to show us the entire
ΞH (see Proposition 4), we can still leverage the choices
the human makes. To estimate ΞH from an individual user’s
demonstrations, we apply our insight: ΞH only includes
trajectories that are similar to or simpler than D. Unlike
prior work, this approach errs towards underestimating (i.e.,

Algorithm 1 Inclusive reward learning from demonstrations
1: Collect human demonstrations: D = {ξ1, ξ2, . . . , ξN}
2: Initialize estimate of human’s choice set: ΞR = D
3: for ξ ∈ D do
4: Generate counterfactual ξ′ from ξ
5: Add the resulting trajectory ξ′ to ΞR
6: end for
7: Update robot’s belief given D and ΞR:

P (rθ | D,ΞR) ∝
exp (β ·

∑
ξ∈D rθ(ξ))(∑

ξ′∈ΞR
exp (β · rθ(ξ′))

)N · P (rθ)

ΞR ⊆ ΞH), since we are implicitly assuming that the user’s
demonstrations are the limits of their capabilities.

In what follows we formalize three properties that result
in similar and simpler trajectories. These properties are not
meant to be an exhaustive list, but rather a starting point for
generating intuitive and inclusive choice sets.

Noisy Deformations. When humans teleoperate robots they
make minor mistakes: e.g., unintentionally pressing the joy-
stick up instead of right. We capture these local perturbations
as noisy trajectory deformations. Let σ ∼ p(·) be a noise
parameter. After sampling σ, we deform the human trajectory
ξ ∈ D to get a similar alternative: ξ′ = f(ξ, σ). One concrete
way to deform the human’s trajectory is ξ′ = ξ + Aσ,
where A defines the deformation shape [32]. In practice, this
produces alternate trajectories the user could have input if
they made small, stochastic changes to their inputs.
Sparse Inputs. To guide the robot throughout the process of
picking up, carrying, and placing a coffee cup, the user must
input a complex sequence of teleoperation commands. Each
of these individual inputs requires user effort and intention.
Hence, we hypothesize that some simpler trajectories are the
result of less user oversight. Let u be a human teleoperation
input, let U = [u1, u2, . . .] be the sequence of human inputs,
and let g(U) → ξ′ be the trajectory that results from input
sequence U . Formally, this property searches for trajectories
that are similar to ξ ∈ D but produced by sparser inputs:

ξ′ = g(U∗), U∗ = arg min ‖ξ − g(U)‖2 + λ · ‖U‖21 (6)

where scalar λ > 0 determines the relative trade-off between
trajectory similarity and input sparsity.
Consistent Inputs. Precisely controlling the robot arm often
requires rapidly changing inputs: e.g., adjusting the position
of the cup, then rotating the cup upright, and then fixing its
position again [19]. Instead of expecting the user to make all
of these different commands, we recognize that it is easier to
maintain consistent inputs. Using the same notation from the
last property, we now search for similar trajectories where
the user minimizes their changes in teleoperation input:

U∗ = arg min ‖ξ − g(U)‖2 + λ ·
∑
‖ut − ut−1‖2 (7)

Solving Equation (7) outputs trajectories ξ′ = g(U∗) where
the human inputs are held roughly constant.



Algorithm. The listed properties produce counterfactuals:
i.e., what would have happened if the human was more noisy,
more sparse, or more consistent. In Algorithm 1 we add these
trajectories to ΞR before leveraging our learning rule from
Equation (4), where ΞR determines the partition function.
Overall, Algorithm 1 learns from human demonstrations by
comparing D only to a personalized choice set that we are
confident the human is capable of inputting.

VI. SIMULATIONS

In this section we apply our learning algorithm across a
spectrum of simulated humans with different levels of ratio-
nality (β). To better relate these findings to our theoretical
results, for now we assume a discrete set of possible reward
functions (we will move to a continuous hypothesis space in
the subsequent user study).
Baselines. We compare Algorithm 1 (Ours) to three base-
lines. First we consider a hypothetical world (Ideal) where
the robot knows exactly what the human’s choice set is
(ΞR = ΞH). Next, we test Bayesian inverse reinforcement
learning (BIRL) where the robot assumes the human is
capable of providing any demonstration [12]. This leads to
ΞR ⊇ ΞH. Finally, we implement a robot that compares
human demonstrations to noisy alternatives (Noise). This
method is a modified version of D-REX [27] without ranking
feedback, and can be seen as an instance of our formalism
where the only counterfactuals are noisy deformations.
Environments. We simulate humans with various limitations
and test our algorithm across four learning environments
(see Fig. 2). In Lavaworld the human teleoperates a 2D
point mass towards a goal. The human wants to avoid lava,
but has a limited range of visibility around the point mass.
In Cartpole the human tries to keep an inverted pendulum
upright, and in Lander the human lands a craft on the surface
of the moon (OpenAI Gym [33]). Within both Cartpole and
Lander we limit how frequently the simulated human can
change their input to mimic the response time of actual
users. Finally, in Swarm the human navigates an obstacle
course with three race cars (developed in Pybullet [34]). All
three cars move simultaneously, but we limit the user to only
control one car at a time. For each environment we hand-
coded a discrete set of possible reward functions.
Results. In Fig. 2 we compute the robot’s belief using
Equation (4) and then evaluate the Shannon entropy of that
belief. We find that robots using Ours extrapolate what the
human really wanted from their suboptimal demonstrations.
Across a spectrum of different environments and different
types of simulated users, we also find that robots which
overestimate the human’s choice set (BIRL) are risk-seeking,
while robots which underestimate the human’s choice set
(Noise, Ours) are risk-averse.

VII. USER STUDY

Motivated by the application of assistive robotics we
designed a user study with three manipulation tasks. Par-
ticipants teleoperated a 7-DoF robot (Franka Emika) using a
2-DoF joystick. Users were unable to fully demonstrate what
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Fig. 2. Simulated users with different levels of rationality (β) interact in
four environments. (Left) The robot’s learned belief in the human’s true
reward. Higher values indicate the robot has learned what the human really
meant. (Right) The robot’s confidence over its learned belief. Robots with
less entropy than Ideal are overconfident in their prediction (risk-seeking),
while robots that have more entropy are overly cautious (risk-averse).

they wanted because of challenges and limitations when con-
trolling the robot (Fig. 3). Here the robot had a continuous
space of rewards rθ(ξ) = θ·Φ(ξ), and our proposed approach
leveraged Algortihm 1 with Metropolis–Hastings sampling to
estimate the human’s true reward weights θ ∈ Rk.

Experimental Setup. Each participant attempted to demon-
strate three manipulation tasks. In Constraint, users needed
to drop-off trash in a waste bin. The bin was placed behind
an obstacle that the robot must rotate around, but users could
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Fig. 3. Human demonstrations and objective results from our user study. (Top) Example user demonstrations and desired behavior for three different tasks.
In each task the user is faced with a different challenge that prevents them from inputting their desired behavior. (Bottom) When the robot errs towards
towards underestimating the human’s capabilities (Ours), it extrapolates what the human really wants from their limited demonstrations. This results in a
more accurate estimate of the human’s true reward and lower regret across the robot’s learned behavior. Error bars indicate standard error about the mean.

only control the end-effector’s position. In Precision, users
needed to carefully stack a marker. This was challenging
because noise was injected into the robot’s motion. Finally,
Coupling is our motivational task from Fig. 1, where users
teach the robot to carry coffee upright. Here the robot’s
translation was coupled with its rotation, so that moving the
robot across the table caused the cup to inadvertently tilt.

Independent Variables. Participants first provided 3-5 tele-
operated demonstrations D for each task. We then compared
what the robot learned with three different methods: BIRL
[12], Noise [27], and Ours (Algorithm 1). BIRL assumes
the human can provide any demonstration, while Noise and
Ours err towards underestimating the human’s capabilities.

Dependent Measures – Objective. We obtained the Error
‖θ− θ̂‖ between the true reward weights θ and the mean of
the estimated reward weights θ̂. We also computed Regret:
rθ(ξ

∗)−rθ(ξR). Here ξ∗ is the trajectory that maximizes rθ,
and ξR is the robot’s learned trajectory which maximizes rθ̂.
If the robot learns what the human really wants, ξR = ξ∗.

Dependent Measures – Subjective. We administered a 7-
point Likert scale survey after showing users what the robot
learned (see Fig. 4). Questions were organized along five
scales: how confident users were that the robot Learned their
objective, how Intuitive the robot’s behavior was, whether the
robot Extrapolated from their demonstrations, how trustwor-
thy users thought the robot was (Deploy), and whether they
would use the shown method again (Prefer).

Participants and Procedure. We recruited 10 subjects from
the Virginia Tech student body to participate in our study
(4 female, average age 22± 3 years). All subjects provided
informed written consent prior to the experiment. We used a
within-subjects design, where we counterbalanced the order
of learning algorithms.

Hypothesis. When human teachers face limitations, robots
that learn from similar and simpler alternatives best extract
what the human wants, and are preferred by users.

Results – Objective. Our objective results for each task are

learned intuitive extrapolate deploy prefer

U
se

r 
R

at
in

g
1

3

5

7

Fig. 4. Survey results from our user study. Higher ratings indicate user
agreement. Posthoc comparisons revealed that the differences between our
method and the baselines were statistically significant (p < .01).

displayed in Fig. 3. Lower errors indicate the robot’s reward
estimate approaches the true reward, while lower regret
shows that the robot’s resulting behavior matches the desired
trajectory. With BIRL, the robot learned to replicate what the
human demonstrated. But because of their limitations, users
were unable to demonstrate their desired trajectory — and
thus BIRL learned suboptimal behavior.

Under Noise, the robot compared the human’s demonstra-
tions to similar alternatives (i.e. noisy perturbations). But
just considering similar alternatives was not enough to reveal
what the human meant. Ours outperformed Noise because it
reasoned over both similar and simpler trajectories. Equipped
with this choice set, Ours inferred the human’s reward (low
error), and output near optimal trajectories (low regret).
Results – Subjective. We report the results of the user survey
in Fig. 4. We received comments such as “Method C (Ours)
was by far the best and the only one I would trust,” which
highlight the perceived benefits of our approach.

VIII. CONCLUSION

We analyzed the consequences of over- and underestimat-
ing the human’s capabilities when learning rewards from
demonstrations. Both our risk-sensitivity analysis and exper-
imental results suggest that erring towards underestimating
the human’s choice set results in safer and more inclusive
learning. Limitations: we recognize that our properties for
generating similar and simpler alternatives require hyperpa-
rameter tuning, which may depend on the environment.
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