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Abstract Robots can use Visual Imitation Learning

(VIL) to learn manipulation tasks from video demon-

strations. However, translating visual observations into

actionable robot policies is challenging due to the high-

dimensional nature of video data. This challenge is fur-

ther exacerbated by the morphological differences be-

tween humans and robots, especially when the video

demonstrations feature humans performing tasks. To

address these problems we introduce Visual Imitation

lEarning with Waypoints (VIEW), an algorithm that

significantly enhances the sample efficiency of human-

to-robot VIL. VIEW achieves this efficiency using a

multi-pronged approach: extracting a condensed prior

trajectory that captures the demonstrator’s intent, em-

ploying an agent-agnostic reward function for feedback

on the robot’s actions, and utilizing an exploration algo-

rithm that efficiently samples around waypoints in the

extracted trajectory. VIEW also segments the human

trajectory into grasp and task phases to further acceler-

ate learning efficiency. Through comprehensive simula-

tions and real-world experiments, VIEW demonstrates

improved performance compared to current state-of-

the-art VIL methods. VIEW enables robots to learn

manipulation tasks involving multiple objects from ar-

bitrarily long video demonstrations. Additionally, it can

learn standard manipulation tasks such as pushing or

moving objects from a single video demonstration in

under 30 minutes, with fewer than 20 real-world roll-
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1 Introduction

Imagine teaching a person to pick up a cup placed

on a table. The quickest method is often to physically

demonstrate this task. Through physical demonstra-

tion, the observer can discern which object to pick up

and how to manipulate that object. Humans efficiently

learn everyday tasks in this way, including moving items,

making tea, or stirring the contents of a pan.

Teaching robots these same tasks, however, proves

to be more cumbersome. Typically, robots employ ei-
ther Imitation Learning (IL) or Reinforcement Learning

(RL) methods. IL generally requires many demonstra-

tions from humans to obtain effective policies [16,23].

During this process, the human teacher often needs to

kinesthetically guide or teleoperate the robot to show it

exactly what actions it should take. On the other hand,

RL methods require a substantial number of rollouts

for robots to perform even simple tasks [32,43]. Addi-

tionally, defining appropriate reward functions for re-

inforcement learning poses a challenge, particularly in

unstructured environments [15].

In this paper we therefore study how robots can

learn tasks by watching humans. The human provides

a demonstration directly in the environment (e.g., phys-

ically picking up a cup), and the robot collects an RGB-

D video of the human’s demonstration. Our objective

is for the robot to leverage this single video to learn the

task and correctly manipulate the same object. The pri-

mary issue here lies in the overload of information con-

veyed by video demonstrations. Each video is comprised

https://collab.me.vt.edu/view/
https://collab.me.vt.edu/view/
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Fig. 1 Robot learning from visual demonstration. 1) A human demonstrates the task directly in the environment: here we
use the example of picking up a cup. Under our proposed approach, the robot processes a single video of that demonstration
to selectively focus on important features such as the human hand and the manipulated object. From these trajectories the
robot obtains waypoints that capture the critical parts of the task (e.g., grasping the cup). 2) These extracted waypoints serve
as a prior for the correct robot trajectory. 3) In practice, simply executing this prior rarely leads to task success due in part to
the morphological differences between human and robot (in this case, the robot misses the cup entirely). Therefore, the robot
must explore in a region around the initial waypoints to iteratively improve its trajectory. 4) After repetitively interacting
with the environment, the robot learns to successfully imitate the behavior demonstrated in the human video.

of thousands of image frames, and each frame contains

numerous pixels. These raw pixel values — when seen

in isolation — are not sufficient for the robot to de-

termine what actions it should take (i.e., how to move

the robot arm). Consequently, robots that learn from

video demonstrations must extract pertinent informa-

tion from a large amount of data.

To address this fundamental problem, our hypoth-

esis is that robots do not need to reason over all the

video data. Consider our motivating example of pick-

ing up a cup: when humans learn by watching other

humans, we do not focus on environmental clutter or

extraneous details. Instead, we just need to see where

the human grabs the cup and how they carry it. At a

high level, we can think about these critical parts of

the task as waypoints: the cup’s initial position, the

human’s hand configuration when grasping, key frames

along the cup’s motion, and where the human finally

places the cup. Robots that can learn these waypoints

from the human’s video demonstration will be able to

perform the overall task without having to reason over

every single aspect of every video frame.

We leverage this hypothesis to develop VIEW: Vi-

sual Imitation lEarning with Waypoints (see Figure 1).

Our approach starts with a video of the human per-

forming their desired manipulation task. We then pro-

cess that video to get an initial trajectory (e.g., a best

guess) of how the robot should complete the same task.

To obtain this initial guess we extract the human’s hand

trajectory, and then autonomously identify the critical

waypoints along that trajectory in visual and Cartesian

spaces. In an idealized scenario, the robot could directly

execute this initial trajectory and complete the task.

However, the initial trajectory almost always fails be-

cause of (a) the morphological differences between hu-

man demonstrator and robot learner and (b) the sensor

noise in the initial RGB-D video. Returning to our cup

example, we often find that — even though the video

shows the human picking up the cup — the robot’s ex-

tracted trajectory misses that cup entirely.

Accordingly, the second part of VIEW focuses on

iteratively improving the robot’s prior and correctly

completing the task. We develop sampling strategies so

that the robot can intelligently explore around its way-

points. This includes waypoints where the robot needs

to grasp an object (e.g., pick up the cup) and waypoints

where the robot is manipulating that object (e.g., car-

rying the cup to a goal location). Again, we rely on our

hypothesis: instead of reasoning about every aspect of

the video, we focus on the object’s location in the way-

point frames. This leads to an iterative learning process

where the robot corrects its initial trajectory and even-
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tually completes the original task shown in the video.

Overall, VIEW enables robot arms to efficiently learn

manipulation tasks such as picking, pushing, or moving

objects, requiring fewer than 20 real-world trials and

less than 30 minutes from demonstration collection to

successful task execution. Additionally, our method en-

ables robots to learn from long horizon videos that in-

volve a combination of tasks — such as moving a cup

and dispensing tea into it, or placing multiple objects

in a pan — using no additional information besides the

initial human demonstration video.

Overall, we make the following contributions:

Condensed prior extraction. We present a new ap-

proach for distilling a prior from video demonstrations

that accurately reflects the human demonstrator’s in-

tent. We achieve this by extracting a concise set of way-

points that capture the human hand trajectory and its

interaction with objects.

Agent agnostic rewards. For sample efficient explo-

ration, the robot requires effective feedback when ex-

ploring around the waypoints in the extracted prior.

To provide this feedback, we propose an agent-agnostic

reward function. Our reward model only focuses on the

critical components of the task — i.e., movement of the

object — regardless of which agent performs the task.

Sample efficient exploration. Given morphological

disparities and noise introduced during prior extraction,

directly replicating the human trajectory is impractical.

We introduce an algorithm that segments the prior into

grasping and task phases, sequentially focusing on lo-

cating the object and replicating its movement.

Few shot adaptation. While our approach can bridge

the embodiment gap between human and robot through

efficient exploration around the human prior, each new

task requires starting from scratch. However, the robot

gains valuable insights into the morphological differ-

ences and camera noise with each solved task. By in-

tegrating a residual learner that leverages this insight

with our prior extraction, we demonstrate that the robot

can achieve few-shot learning on new tasks.

Comparing VIEW to baselines.We conduct a com-

parative analysis of our method against existing state-

of-the-art approaches in visual imitation learning. Ad-

ditionally, an ablation study is performed in a simulated

environment to underscore the significance of each com-

ponent within our framework. These comparative anal-

yses and ablation studies collectively demonstrate our

method’s efficacy in enabling robots to quickly imitate

a wide range of tasks based on video demonstrations.

2 Related Work

We study how robots can efficiently learn to replicate

a task based on a single video demonstration. Our ap-

proach builds upon existing learning from demonstra-

tion methods, particularly those that use videos, way-

points, and human activity recognition.

Learning from demonstrations (LfD). LfD is a

general learning framework [49,56] that is used across

domains such as autonomous driving [46,10], robotics

[27,28,29,40,51], and video games [2,57,58]. In robotics,

LfD has been employed to learn from teleoperated ex-

pert demonstrations [29,55,30,41], extended to include

imperfect demonstrations [27,5,4], and combined with

other modalities such as preferences [40,70,21] or lan-

guage [64,38,36]. A significant aspect of LfD in robotics

involves the sourcing of demonstrations, predominantly

obtained from human actions within the agent’s envi-

ronment. For example, in autonomous driving, demon-

strations encompass steering controls similar to those

the agent uses [46], while in robotic manipulation, demon-

strations are acquired via direct teleoperation [28] or

kinesthetic teaching [40]. This reliance on human pro-

vided demonstrations presents certain challenges, espe-

cially in robotics. Humans primarily use their hands

for manipulation, whereas robots utilize end-effectors

with distinct morphologies. This fundamental discrep-

ancy limits the feasibility and diversity of the training

data collected for robot learning.

To address the morphological disparities between

humans and robots, some researchers have advocated

for the use of tools such as reacher-grabbers that resem-

ble grippers commonly employed in robotics [47,60,69,

78], or utilizing camera angles that reduce the effects of

hand to gripper morphology [31,14]. These tools facili-

tate the recording of demonstrations that can be more

easily translated into actionable robot policies, without

the need for teleoperation. While these approaches have

proven effective, they do not ameliorate the underlying

limitation: the demonstrations are inherently restricted

in scope due to the specialized interface. In response to

this challenge, there has been a shift towards compiling

extensive robot demonstration datasets, like Open-X

[45], aiming to establish a foundational resource akin to

ImageNet for robot learning. But these datasets over-

look the vast reservoir of already existing human video

demonstrations, which could significantly expedite the

learning process for robots. VIEW builds upon prior

LfD works by learning from human demonstrations.

However, VIEW focuses on learning directly from hu-

man videos, and does not rely on kinesthetic demon-

strations, teleoperated inputs, or intermediary tools.
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Learning from video demonstrations. There has

been a parallel research focus on teaching robots with

videos of robots performing the desired task [8,50,76,

74]. In these methods a human teleoperates the robot in

the video demonstration (i.e., the video demonstration

is of the robot completing the task), and the robot learns

to imitate the resulting RGB-D video. These methods

tackle the challenges that arise from a lack of explicit

action information [8,76,74]. A significant aspect of this

research is the reduction of data complexity through

an emphasis on keyframes [76,74], aiming to simplify

robot learning by concentrating on achieving these spe-

cific frames. Nevertheless, these methods necessitate a

large number of trials with the robot [8], and do not

solve the key problem of obtaining generalized video

demonstrations from humans or other agents.

Alternatively, some researchers have explored learn-

ing from human video demonstrations directly, with

considerable effort dedicated to transforming human

videos into a format applicable to the robot’s domain

[67,35,77,62]. To facilitate this transformation, these

methods utilize cycle consistency networks [24] to trans-

late human videos into equivalent robot videos [77,62].

Once videos are translated, they extract key points from

the videos, which serve as the basis for learning [77,37].

However, a significant drawback of this approach is the

necessity for a vast collection of videos, showcasing both

humans and robots performing tasks. This requirement

poses a substantial limitation, adversely affecting the

scalability of such methods.

Several approaches closely align with our method,

focusing on human-to-robot imitation learning [33,25,

26,66,1,59,9,48,63,3]. These methods extract meaning-
ful representations of a task from videos [9] or use neu-

ral networks to learn reward functions from the videos

to facilitate reinforcement learning [59,1]. Despite the

promise shown by many of these methods, they share a

common challenge: the necessity for a substantial num-

ber of robot rollouts in real-world scenarios to learn

tasks effectively. One particularly similar approach here

is WHIRL [3], which mirrors our method but employs

a variational autoencoder-based exploration exploita-

tion strategy. As we will show, WHIRL requires a large

number of rollouts to converge, and struggles to scale

for long horizon tasks. Additionally, this approach also

requires video inpainting [34], where the human must be

removed from each frame in the demonstration video,

and the robot must be removed from each rollout frame

before reward computation. Given that inpainting is

highly GPU-intensive, this process can require power-

ful GPUs and lead to substantial wait times between

rollouts. Our proposed method, VIEW, addresses these

challenges by segmenting and sequentially solving the

task, reducing computational demands. In our exper-

iments, we will directly compare VIEW and WHIRL

in terms of task success and training time to highlight

these improvements.

Waypoint-based learning. While the methods dis-

cussed so far primarily focus on learning action poli-

cies directly from demonstrations, a growing trend in

robotics is a shift towards teaching robots to reach des-

ignated waypoints. This approach is gaining traction,

particularly because it aligns well with the use of sep-

arate planning and control algorithms, allowing low-

level controllers to reach goals set by high-level plan-

ners. This concept has seen application in reinforce-

ment learning for tasks such as object pick-and-place

and door opening [39]. However, the success of these

algorithms hinges on the creation of meticulous reward

functions to guide learning. In the domain of imita-

tion learning, it has facilitated the learning of intricate

tasks, such as operating a coffee machine [65]. Never-

theless, similar to methods discussed on learning from

video demonstrations, Shi et al. [65] learn from a video

demonstration of the robot performing the task. This

distinction is crucial, as robot demonstrations bypass

the morphological differences encountered when learn-

ing from human videos. Our approach to prior compres-

sion bears similarities to these waypoint-focused meth-

ods. However, it differs in that VIEW learns directly

from a single human video, where the human physically

performs the task without a robot.

Human activity recognition. Many of the meth-

ods discussed above rely on human intent and activ-

ity recognition for enabling robots to understand ob-

ject affordance. Within the realm of robot manipula-

tion, numerous studies have proposed methods that use

annotated video datasets such as SomethingSomething

[20], YouCook [13], ActivityNet [6], or the 100 Days

of Hands (100DOH) [61]. The 100DOH dataset is par-

ticularly valuable due to its detailed object interaction

annotations. Building upon prior works, our approach

utilizes the 100DOH framework to extract crucial data

on hand positioning and interactions with objects.

In contrast to the many of the methods discussed

here, VIEW distinguishes itself by focusing on sample-

efficient learning directly from human videos. Our ap-

proach aims to teach robots manipulation tasks — such

as picking or moving objects — with minimal human

supervision. The only interaction required from the hu-

man is providing a single video demonstration.
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3 Problem Statement

We consider single object manipulation tasks in un-

structured environments. First a human teacher physi-

cally demonstrates their desired task within the robot’s

workspace. During this demonstration the robot is moved

out of the way (i.e., the human does not interact with

the robot) and the robot records the human’s behavior

with a stationary RGB-D camera. After the demonstra-

tion is complete the video is provided to the robot, and

the robot must learn how to replicate the same task

based on this single video. We highlight that the hu-

man and robot have morphological differences — e.g.,

the human’s hand is different from the robot’s gripper

— and so the way the human performed the task may

not transfer directly to the robot arm.

Environment. We formulate the robot’s environment

as a Markov Decision Process without rewards: M =

⟨S,A, T ⟩. The robot’s end-effector position in Cartesian

space is its state s, and the robot’s workspace becomes

its state space S. In every state the robot can take an

action a ∈ A which is the end-effector velocity. This

action moves the robot to a new state s′ based on the

environment transition probability T (s′ | s, a). We as-

sume the environment remains unchanged between the

human demonstration and the robot’s learning activity;

that is, all objects maintain their positions. Addition-

ally, we only consider scenarios where the environment

is captured from a fixed camera perspective.

Video Demonstration. The robot learns from a sin-

gle video demonstration (Vi) of a human performing

the task (τi). This video is captured using a stationary

RGB-D camera that is set up such that the human and

the object they manipulate are visible at all times. The

human does not interact with the robot beyond provid-

ing this video. Although the human only provides one

video for task τi, they may provide demonstrations for

multiple tasks: e.g., the robot could receive a set of n

videos V1, . . . , Vn for n different tasks τ1, . . . , τn. The

robot’s objective is to map each video into a trajectory

that completes the demonstrated task.

Tasks. Our focus is primarily on tasks that involve ma-

nipulating a single object at a time. We consider tasks

such as picking, pushing, or moving an object within

the robot’s workspace. While multi-object tasks are al-

lowed, they must be decomposed into multiple sequen-

tial single-object manipulation tasks, similar to those

mentioned above.

4 VIEW

Our approach to imitation learning from video demon-

strations relies on our intuition that efficient learning

requires focusing on critical waypoints. In this section

we discuss our approach that consists of three main

parts: first, extracting which object to pay attention

to, how this object moves throughout the task. Sec-

ond, designing a robust reward signal that compares

the robot’s behavior to the human’s behavior. Third,

exploring around the extracted waypoints in a sample-

efficient manner. We refer to our method as VIEW:

Visual Imitation lEarning with Waypoints. Refer to

Figure 2 for an overview.

4.1 Prior Extraction

Since VIEW relies on information about both hand and

object movements, we divide the extraction process into

two components: Hand Trajectory Extraction and Ob-

ject Trajectory Extraction. A summary of our overall

prior extraction method can be found in Figure 3.

Hand Trajectory Extraction. Prior methods have

extensively addressed the extraction of hand trajecto-

ries from video demonstrations, often leveraging open-

source neural networks for this purpose [3,73,79]. In our

approach (see Figure 3), we analyze each frame (vt) in

a video (V ) using the 100 Days of Hands (100DOH)

model [61]. This model helps us identify the hand’s lo-

cation and whether it is interacting with any objects via

bounding box coordinates (bhxt
, bhyt

) and contact infor-

mation (ct). A bounding box alone can be ambiguous

with respect to hand orientation and direction. To re-

solve this ambiguity, we further refine our coordinates

with the MANO hand model [53] to pinpoint the hu-

man’s wrist position (phxt
, phyt

). We convert the 2D im-

age coordinates into 3D world coordinates (xh
t , y

h
t , z

h
t )

using depth information from the camera. We use way-

point to refer to the 3D world coordinates of the human

hand or the object.

So far our methodology bears a strong resemblance

to that used in WHIRL [3]. However, WHIRL overlooks

a significant issue: the abundance of points along the

extracted trajectory. For instance, a mere ten-second

demonstration recorded at 60 frames per second yields

a total of 600 frames. While this amount of visual and

trajectory data appears substantial, upon closer inspec-

tion, much of it is redundant. Returning to our example

of picking up a cup, the video contains crucial way-

points such as the initial hand position and the cup’s

grasp position, but it also includes several redundant

frames that interpolate between these key waypoints.
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Fig. 2 Outline of VIEW, our proposed method for human-to-robot visual imitation learning. (Top Left) VIEW begins with
a single video demonstration of a task. (Bottom Left) From this video we extract the object of interest, its trajectory, and the
human’s human trajectory. (Middle) We then perform compression to obtain a trajectory prior — a sequence of waypoints the
robot arm should interpolate between to complete the task. Unfortunately, this initial trajectory is often imprecise due to the
differences between human hands and robot grippers, as well as noise in the extraction process. We therefore refine the prior
using a residual network, which is trained on previous tasks to de-noises the current data. (Right) The de-noised trajectory
is then segmented into two phases: grasp exploration and task exploration. (Top Right) During grasp exploration, the robot
determines how to pick up the object by modifying the pick point in its trajectory. (Bottom Right) Following a successful
grasp, the robot proceeds to task exploration, where is simultaneously corrects the remaining waypoints of the trajectory.
After completing exploration, the robot synthesizes a complete trajectory. (Middle) This solved trajectory, alongside the prior
trajectory, is used to further train the residual network, thus enhancing the performance of our method in future tasks.

This principle extends to various manipulation tasks;

for instance, stirring a pan necessitates waypoints de-

picting the start location, spatula grasp, stirring loca-

tions, and final place location. All other intermediate

points can be discarded.

To take advantage of this redundancy, we apply a

trajectory compression algorithm called Spatial Quality

Simplification Heuristic - Extended (SQUISHE) [44].

SQUISHE enables users to prioritize key waypoints by

setting a maximum allowable error or target count, se-

lectively removing points that do not affect the tra-

jectory shape. To achieve this, it minimizes synchro-

nized Euclidean distance by calculating the difference

between each waypoint and its interpolated position,

pruning points that fall within an acceptable error range.

For instance, if the movement between the hand’s ini-

tial position and the cup grasp can be interpolated,

SQUISHE removes intermediate waypoints. By condens-

ing the trajectory in this way, we retain only significant

trajectory changes, such as shifts in hand direction or

contact with objects, often reducing the length from

over 300 points to just 3 or 4.

Object Trajectory Extraction. Thus far, we have

focused on extracting a concise prior trajectory from

the human’s hand movements. However, merely mim-

icking human actions is not sufficient for the robot to

solve the task. In reality, the critical aspect of these

demonstrations lies in understanding how the human is

interacting with and moving objects. Revisiting our cup

example, the focus should not be on repeating the hu-

man’s hand movements; instead, the robot must learn

to move the cup to the correct location.

To extract the object’s trajectory, we use the hand

interactions detected by the 100DOH model to iden-

tify frames where the human’s hand is in contact (ct)

with an object. We then create anchor boxes of vary-

ing sizes, similar to region proposal networks in image

detection [52]. Using these anchor boxes we extract ob-

jects that are in close proximity to the human’s hand at

points of interaction. While there may be frames where

the human hand is in proximity to multiple objects, we

hypothesize that the majority of the frames will only

contain the human’s intended object (tag).

Once the object is identified, we generate its trajec-

tory (ζoh) in the video demonstration. We accomplish

this by generating bounding boxes around the intended

object in pixel coordinates (poxt
, poyt

). We then apply

the same de-projection technique used in hand trajec-

tory extraction and use the depth information (δt) to

translate two-dimensional image frame coordinates into

three-dimensional world coordinates (xo
t , y

o
t , z

o
t ). This
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Fig. 3 An overview of our prior extraction method (Bottom Left in Figure 2). Utilizing the 100 Days of Hands (100DOH)
detector [61], we first identify the location of the hand and if it is in contact with any objects present in the frame. We
then refine the human’s hand trajectory using the MANO model [53] to capture wrist movements. Subsequently, to eliminate
redundancy, we apply the SQUISHE algorithm [44]. This produces an initial trajectory with key waypoints that the robot
should interpolate between. To pinpoint the object of interest amidst potential clutter, we analyze frames where hand-object
contact occurs, creating anchor boxes that — in conjunction with an object detector — reveal the object the human interacts
with most frequently. This identification enables us to construct an accurate object trajectory from the human’s video.

process outputs a 3D trajectory of the intended object,

capturing its movement throughout the demonstration.

Refer to Figure 3 for a summary.

Overall our extracted prior provides us with three

key pieces of information: a condensed trajectory rep-

resenting the human’s visited waypoints (ξh), a label

identifying the object of interest (tag), and a trajectory

indicating the object’s movement (ξoh), as summarized

in Algorithm 2 in Appendix A.3.

4.2 Agent-Agnostic Rewards

After we get the human’s hand trajectory (ξh) from

the video demonstration, the robot executes this tra-

jectory in the environment to try and solve the task

(i.e., the human’s hand trajectory becomes the robot’s

initial trajectory). However, this trajectory almost al-

ways fails because of morphological differences and sen-

sor noise. In order to improve the initial trajectory over

repeated interactions, the robot explores around ξh to

find the correct waypoints that solve the task (see Fig-

ure 2). We will describe this exploration in detail in

Section 4.3. But before we get to the exploration, we

first need a feedback mechanism that allows the robot

to differentiate between “good” and “bad” waypoints.

More specifically, we design a reward model that com-

pares how the robot is manipulating the target object

to how the human manipulated the same object during

their video demonstration.

Our prior from Section 4.1 contains the tag identify-

ing the target object and its trajectory throughout the

demonstration video. Similarly, we can take videos of

the robot’s interactions in the environment and extract

the actual trajectory of the target object using the same

procedure. To compare the movement of the object for

the two agents, we take the mean square error (MSE)

between the corresponding waypoints in their respec-

tive trajectories. The negative of this distance serves as

our reward. For clarity, let the object trajectory from

the prior ξoh consist of waypoints (phxt
, phyt

) and the ob-

ject trajectory from the robot interaction ξor consist of

waypoints (prxt
, pryt

). Then, the reward corresponding to

each waypoint is given as:

rt = − || ωr
t − ωh

t || (1)

ωt = (pxt
, pyt

) (2)

To minimize transformation errors, we measure this

distance in pixels. This approach is agent-agnostic: we

extract object trajectories from both agents’ videos and
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compare them directly, allowing the robot to align its

behavior closely with that demonstrated by the human.

4.3 Exploration for Iterative Improvement

With a metric to assess the robot’s performance, we

can iteratively refine its trajectory. Starting with the

initial trajectory derived from human hand movements

(Figure 2), the robot gradually improves this trajectory

by exploring around the waypoints. In typical tasks, the

robot first grasps an object and then manipulates it.

Therefore, the task success depends on first establishing

a secure grasp. In our running example of teaching the

robot to pick up a cup, the robot cannot succeed if it

grabs the wrong object (e.g., picks up a plate), or if the

robot does not grasp the object securely (e.g., drops

the cup). We therefore divide the overall exploration

into two parts: grasp, where the robot finds the grasp

location for the object, and task, where the robot learns

to imitate how the human manipulates that object.

Formally, the initial trajectory extracted from the

human’s video consists of a set of n waypoints and their

corresponding contact information ξh = {(ωh
t , ct) | t ∈

[t1, t2, . . . , tn]} where each waypoint is a tuple (x, y, z)

and c is the contact. Here x, y, z indicate the 3D posi-

tion of the hand and c indicates if the hand is in con-

tact with any objects. From this contact information we

can determine when the human grasps and releases ob-

jects. For instance, let the waypoint where the contact

begins be ωh
grasp. We use this point to divide the prior

into two trajectories: ξhgrasp = {(ωh
t1 , ct1), . . . , (ω

h
grasp+1,

cgrasp+1)} and ξhtask = {(ωh
grasp+1, cgrasp+1), . . . , (ω

h
tn ,

ctn)}. For clarity, from now we will denote trajectories

as a set of waypoints ω, however, each element of the

trajectory is a tuple of a waypoint and its corresponding

contact c. Under VIEW, the robot separately explores

around these two trajectories to pick up the object and

then perform the task. Below we discuss exploration

strategies for iteratively improving grasp and task.

4.3.1 Correcting the Grasp Waypoint

In our first phase the robot explores around the prior

ξhgrasp = {ωh
t1 , . . . , ω

h
grasp, ω

h
grasp+1}. Although this prior

contains multiple waypoints, the primary focus is on

ωh
grasp, the waypoint where it should grasp the target

object. The approach used to reach the object is less

important as long as the grasp is successful. Accord-

ingly, in VIEW the robot uses the position where the

human grasped the object as a prior (i.e., ωh
grasp), and

then the robot intelligently explores around this prior

to find a grasp location that is effective for the robot

arm and gripper.

Fig. 4 Generating a bounding box for exploring grasp lo-
cations. We define a region around the waypoint ωh

grasp =
(x, y, z) where the human first interacted with the object
in the video demonstration. (Top) A naive approach: the
bounding box is centered around ωh

grasp with limits ∆.
The principal diagonal of the bounding box is defined by
(x − ∆, y − ∆, z − ∆) and (x + ∆, y + ∆, z + ∆). (Bottom)
Our approach that leverages the estimated object location
ωo
grasp at the time of grasping to bias the search space. The

principal diagonal of the bounding box are ωh
grasp +∆ĵ and

ωo
grasp−∆ĵ, here ĵ is the unit vector parallel to the principal

diagonal. This bounding box is typically smaller and is more
likely to include an effective grasp location for the robot.

Restricting the Exploration Space. We define a

search region around the waypoint ωh
grasp using a bound-

ing box B. A simplistic approach centered on ωh
grasp

would include an area too large for efficient search.

More explicitly, defining a range in the robot’s coor-

dinates with limits ∆: from (x − ∆, y − ∆, z − ∆) to

(x + ∆, y + ∆, z + ∆), would create a bounding box

with the waypoint ωh
grasp at the center. However, such

a bounding box may be unnecessarily large and span

irrelevant parts of the robot workspace. In our running

example of learning to pick up a cup, this bounding box

could include part of the workspace which is farther

away from the cup, as shown Figure 4 (Top). Instead,

we create a compact bounding box around both ωh
grasp

and the object location ωo
grasp, extending the diagonal

between these points by a limit ∆ to account for sensor

or model inaccuracies. This bounding box, defined from

(ωo
grasp−∆ĵ) to (ωh

grasp+∆ĵ), uses ĵ as the unit vector

between the two points. This focused region, shown in

Figure 4 (Bottom), allows for a more efficient search by

targeting relevant areas.
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Rewards for Grasp Exploration. Once the explo-

ration region B is established, the robot tests different

waypoints within it to find an effective grasp. A grasp

is only successful if it enables the robot to pick up and

move the object. To verify this, we include the next

waypoint ωh
grasp+1 in the exploration sequence, allow-

ing the robot to grasp at a chosen location and proceed

to the following waypoint. Since we know the object of

interest (tag), we can confirm that a grasp is successful

if the object remains close to the robot’s end-effector at

timestep grasp+ 1.

Grasp Exploration. The final step involves searching

for the optimal grasp location within B. This search

is complicated by two main challenges. First, for most

waypoints the robot does not move the object and the

rewards are constant. Put another way, we have sparse

rewards. Second, if the robot reaches a waypoint that is

close to the object it may accidentally knock the object

over or otherwise lower its measured rewards. Hence,

waypoints that are actually close to a successful grasp

could be penalized by the reward model.

Returning to our cup example, consider a scenario

where the robot receives a baseline reward of +10 at

waypoints that don’t involve moving the cup. If the cup

is supposed to be moved left as per the human’s video

demonstration, and the robot picks a point that hits the

cup and moves it to the right, the reward might drop

to +5. Conversely, moving the cup correctly to the left

might increase the reward to +15. In both cases, the

robot has gained valuable information: the chosen way-

point interacted with the object and may be near to

a successful grasp location. This variation in rewards

— regardless of whether the reward is increasing or

decreasing — helps to pinpoint the object’s location

within the search space B.
Put together, the sparse rewards at grasp locations

and locally varying rewards around those locations make

it difficult for the robot to efficiently optimize for suc-

cessful grasps. We therefore propose a quality-diversity

(QD) approach for intelligently searching the space B.
Our proposed QD algorithm is broken into a high-level

search — which divides B into regions of interest —

and a low-level search — which explores within those

regions to pinpoint a successful grasp location. We sum-

marize this overall method in Algorithm 3.

High-Level Grasp Exploration. To efficiently explore the

bounding box B, we discretize it into distinct regions

using Centroidal Voronoi Tessellation (CVT) [72]. By

numerically sampling points within B and applying k-

means clustering, we generate M evenly distributed

clusters, each representing a region for exploration. The

centroids of these clusters form the set of potential high-

level waypoints Ωunvisited = {ω | i = 1, 2, . . . ,M}. The
robot’s task is to identify regions likely to contain a

successful grasp location for targeted refinement.

A naive approach would be to uniformly sample

waypoints from Ωunvisited. However, this risks select-

ing points close to already tested centroids, leading to

redundant exploration (see Figure 5 Top). Instead, we

propose a sampling strategy that prioritizes unexplored

regions by maximizing the distance between new way-

points and previously visited ones. We define the next

high-level waypoint ωnext as:

ωnext = argmax
ω∈Ωunvisited

D(ω,Ωvisited) (3)

D(ω,Ωvisited) =
1

k

∑
ωj∈Nk

i

|| ω − ωj || (4)

Here, D(ω,Ωvisited) is the mean distance between each

unvisited waypoint and its k-nearest neighbors (Nk
i ) in

the visited set Ωvisited, i.e., the set of tested centroids.

This ensures that new waypoints are chosen based on

their separation from already tested locations.

To address potential clustering issues where a way-

point is close to one visited point but far from oth-

ers (see Figure 5 Middle), we introduce a regulariza-

tion constraint. By calculating the variance ν of dis-

tances between an unvisited waypoint and all visited

waypoints, we ensure equidistance. Our final optimiza-

tion balances diversity and uniformity:

ωnext = argmax
ω∈Ωunvisited

D(ω,Ωvisited) +
1

ν
(5)

This optimization ensures that the selected way-

point from Ωunvisited maximizes distance from all way-

points in the set while attempting to be equidistant

with the waypoints in Ωvisited (see Figure 5 Bottom).

In practice, the robot selects a high-level waypoint from

Ωunvisited using Equation (5), and then executes a tra-

jectory in the environment that attempts to grasp the

object at that waypoint. We use the reward model from

Equation (1) to assess the performance of this grasp.

Low-Level Grasp Exploitation. To prioritize regions for

refinement, the robot selects waypoints from the vis-

ited waypoint set (Ωvisited) based on the magnitude of

reward changes. Waypoints where rewards varied signif-

icantly — either increasing or decreasing — are more

likely to be close to an optimal grasp. We sample a

waypoint ωlocal from Ωvisited with the probability dis-

tribution:

pi =
eγσi∑
eγσj

(6)

where the denominator is summed across all visited

waypoints, and σi is the normalized variation in reward
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Fig. 5 Comparison of different sampling methods in our high-level grasp exploration. We show an example task in a two-
dimensional space which is bounded around the prior (black triangle) and the object (green star). (Top) Each new high-level
waypoint point is uniformly randomly sampled from our set of unvisited waypoints. This method can eventually reach the
object with sufficient exploration. However, new samples my be close to previously tested points. (Middle) To quickly reduce
the uncertainty about the unknown object location, we can sample high-level waypoints that maximize the distance to all
previously visited waypoints. We expect that these waypoints will explore new regions of the search space. In practice, however,
the distance-based estimation from Equation (4) results in points that are clustered at the corners and center. (Bottom) Our
proposed solution is to add a regularizing term in Equation (5) to ensure that the next high-level waypoint is truly from an
unexplored region of workspace. Our experiments show that this approach finds the grasp location more rapidly.

between the high-level waypoint i and the reward R0

from the initial trajectory:

σi =
|| Ri −R0 ||

maxj || Rj −R0 ||
(7)

This approach biases the robot’s search toward high-

level waypoints that showed the most significant changes

in reward, ensuring focus on areas likely to contain a
successful grasp location.

Once a high-level waypoint ωlocal is selected, the

robot defines a smaller bounding box Blocal ⊂ B cen-

tered around ωlocal with a radius ϵ. This refined re-

gion narrows the search to the immediate vicinity of

the promising waypoint. Within Blocal, the robot uses

an optimization algorithm, such as Bayesian optimiza-

tion (BO)1 [68], to maximize the reward function. BO

iteratively samples waypoints ωopt from Blocal, evaluat-

ing each based on the reward model (Equation (1)). If

a sampled waypoint ωopt achieves a higher reward than

the current ωlocal, it is added to Ωvisited as the new

candidate for refinement.

This two-step process — targeting promising re-

gions through reward-based sampling and optimizing

locally using BO — enables the robot to precisely iden-

tify and finetune the optimal grasp location within the

1 VIEW is not tied to a specific local optimization algo-
rithm. While we use BO in our experiments, it can be replaced
with any other optimizer.

bounding box B. Algorithm 3 in Appendix A.3 summa-

rizes this exploration scheme.

Trading-off Between High- and Low-Level Search. Our

overall exploration process for identifying a successful

grasp trades-off between testing new high-level way-

points from Ωunvisited and then exploiting the regions

around relevant waypoints from Ωvisited. We balance

this exploration of new regions and exploitation of sam-

pled regions using probability pexplore: with probability

pexplore we test an Ωunvisited waypoint, and with proba-

bility 1−pexplore the robot explores the region around a

waypoint from Ωvisited. The value of this probability is

chosen based on the variance in the rewards of the high-

level waypoints. Concretely, the exploration probability

is calculated as pexplore =
α

σmax
where σmax is the high-

est normalized variance in reward between the high-

level waypoints and α is a hyperparameter. Intuitively,

as the variance in the rewards increases, the probability

of low-level exploitation increases proportionately. This

search process ends once the robot identifies a waypoint

that successfully grasps the target item.

In summary, grasp exploration works in a hierar-

chical manner. First the robot conducts a broad search

across the bounding box B by dividing it into M evenly

distributed high-level waypoints. The robot then con-

ducts a more refined search in the vicinity of waypoints

that are potentially close to the object — i.e., way-

points that incur a high variation in reward. Overall,
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our grasp exploration approach has similarities to the

QD algorithm CMA-ME [17]. The primary novelty of

our approach as compared to [17] is the sampling tech-

nique used for selecting the high-level waypoints. While

CMA-ME relies on randomness to select a point from

Ωunvisited, we propose a regularized entropy metric for

selecting points that are evenly spaced across the search

space. In Figure 5 we show an example of why this high-

level sampling approach is important, and how our pro-

posed approach can more rapidly identify the grasp lo-

cation. We also test this difference in our experiments.

4.3.2 Correcting the Task Waypoints

Once the robot has grasped the target object, it can

now proceed to replicate how the human manipulated

that object in the demonstration video. This process is

more straightforward than identifying the correct grasp

because here the rewards are dense: any change in the

way the robot moves the object will lead to a change in

the object’s position, and therefore a change in the mea-

sured rewards from Equation (1). Accordingly, we can

use off-the-shelf optimization methods to iteratively im-

prove the waypoints along the initial trajectory ξhtask =

{ωh
grasp+1, . . . , ω

h
tn} after the robot has learned to suc-

cessfully grasp the target item.

Similar to our approach for grasp optimization, we

start by drawing bounding boxes B around each way-

point in ξhtask. Here it is important to remember that the

reward function from Equation (1) is the distance be-

tween the object position in the human’s video demon-

stration and the object position in the robot’s task ex-

ecution. Hence, the rewards associated with each way-

point are independent, and the robot can simultane-

ously explore and improve each task waypoint without

affecting the results across other task waypoints. We

therefore conduct n−grasp search processes in parallel,

one for each waypoint from ωh
grasp+1 to the final way-

point ωh
tn . Let us denote the robot’s updated trajectory

as ξrtask = {ωr
grasp+1, . . . , ω

r
tn}. To find an optimal way-

point ωr, the samples a point within the correspond-

ing bounding box and then rolls-out a trajectory that

moves through that point in the environment. Here we

use Bayesian optimization (although other methods are

possible): for each ωr
t ∈ ξrtask, a separate instance of BO

updates the robot’s waypoint to better match the video

demonstration. See Algorithm 4 in Appendix A.3 for a

summary.

4.4 Residual Network

The process we have described so far in Section 4 en-

ables the robot to learn a task from a single video. But

when the robot gets a new video demonstration for a

different task, we are faced with the question: does the

robot need to restart VIEW from scratch, or can the

robot leverage what it has learned on one task to ac-

celerate learning on another task? Here we return to

our example of learning to pick up a cup. Initially, the

robot extracts an imperfect trajectory ξh from the video

demonstration, which it refines through exploration to

arrive at a successful trajectory ξ∗. Ideally, the robot

would have extracted ξ∗ directly as the initial trajec-

tory. The discrepancy between ξh and ξ∗ reflects the

robot’s systematic errors during prior extraction.

We hypothesize that the error can be modeled as

additive noise, expressed as ξ∗ = ξh+ ηstatic+ ηrandom.

Here, ηstatic accounts for consistent errors — such as

sensor inaccuracies, model misalignment, or morpholog-

ical differences — that remain approximately constant

across tasks. To enhance the accuracy of prior trajec-

tory extraction, we propose training a residual network

to estimate this noise. Given a dataset of k previously

solved tasks D = (ξhk , ξ
∗
k), we train a model to estimate

the noise ηstatic. More specifically, we train a residual

Φ(ξh) = η to minimize the loss ∥ξ∗−ξh+Φ(ξ)∥2 across

the dataset. The robot then deploys this residual when

it receives the k + 1 video demonstration. The robot

starts by compressing the new video using the steps

from Section 4.1 to get ξhk+1; we then add the residual

Φ(ξhk+1) to push this prior towards the correct trajec-

tory. In practice, we will show that the residual can im-

prove the accuracy of the prior and reduce the number

of iterations the robot needs to learn new tasks.

4.5 Incorporating Multi-Object Scenarios

Our discussions thus far have dealt with scenarios where

the human interacts with a single object. However, many

real-world manipulation tasks involve handling multi-

ple objects. For example, when making tea the human

might carry a cup to a specific location, and then add

tea from a kettle into the cup.

The proposed method VIEW readily adapts to such

multi-object scenarios. Recall that our prior extraction

process outputs a hand trajectory, providing the wrist

location and contact information throughout the video.

We can use the changes in the contact information to

divide long trajectories — involving multiple objects

— into distinct sub-trajectories for each subtask. Each

subtask then involves interaction with only one object,

which we can solve using the algorithms described above.

Consider the example of making tea. By segmenting

the trajectory at points where contact changes, we can

create separate, manageable segments: one for moving

the cup and another for adding the tea. Each subtask
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Fig. 6 Task demonstrations used in our simulations. (Top) During Pick the robot is teleoperated to pick up a cup placed
on the table. (Middle) During Push the robot is teleoperated to grasp the cup and push it to a new specified location on the
table. (Bottom) During Move the robot picks up the cup and places it at a specified new location on the table. In our ablation
studies examining the effects of noise, trajectory compression, and exploration techniques, we utilize a single demonstration
that is then perturbed using Gaussian noise. For assessing the influence of residual learning in our final simulation, we uniformly
sample start and end points for each task and collect teleoperated demonstrations accordingly. These demonstrations are then
perturbed using a deterministic noise function. We compile a dataset of 50 demonstrations for each task, either by introducing
Gaussian noise to a single trajectory or by generating 50 distinct trajectories through uniform sampling.

is then solved separately using our algorithm, which in-

cludes dividing each individual subtask into grasp and

task phases and solving them using our methods in

Section 4.3.1 and Section 4.3.2. For example, we first

address the cup’s movement, and once complete, pro-

ceed to handle the kettle in a similar manner 2.Overall,

this modular strategy allows the robot to systemati-

cally learn long, multi-step tasks with visual imitation

learning by concentrating on one subtask at a time.

5 Simulations

We proposed VIEW, a waypoint-based algorithm that

can imitate humans by watching video demonstrations.

We hypothesize that each component of VIEW will sig-

nificantly impact the overall success of the robot. To

2 See https://collab.me.vt.edu/view/ for videos show-
casing VIEW learning these multi-object tasks.

test this hypothesis, in this section we conduct an ab-

lation study that investigates how each part of VIEW

contributes to the overall robot performance.

Experimental Setup. The simulations are conducted

in a Pybullet environment. To collect demonstrations,

we control a simulated FrankaEmika robot arm and

record frames at the rate of 20Hz. Demonstrations are

collected for three tasks: picking up an object (pick),

pushing an object (push), and picking and placing an

object (move). A single object (a cup) is used for all

evaluations (See Figure 6). For the push and pick tasks,

the initial trajectory has three waypoints after com-

pression, while the move task yields four waypoints. To

approximate noise in the real world, we distort these ini-

tial trajectories using either Gaussian noise or a fixed

noise matrix. To understand our algorithm’s perfor-

mance in ideal conditions, no noise is injected into the

reward function. The success criteria vary slightly be-

tween tasks: for pick, success means the robot has picked

https://collab.me.vt.edu/view/
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Fig. 7 Simulation results demonstrating the impact of noise
on our algorithm. We test VIEW on three tasks — pick, push,
move. For each task we collect the true initial trajectory,
and then add Gaussian noise to distort that trajectory. This
captures scenarios where the robot’s prior is incorrect (e.g.,
misses the cup entirely), and the robot must explore around
this prior to imitate the demonstrated task. Our results are
shown across 50 trials. The shaded region in the top plot in-
dicates less than 20 minutes of learning time to successfully
imitate the task. The shaded region in the bottom plot indi-
cates more than 80% success rate. The bars indicate standard
error of the mean.

up the cup; for push, it is successful if it pushes the cup

to the correct location; and for move, success requires

the robot to pick up the cup and place it at the correct

location on the table.

5.1 Impact of Noise

In our first simulation, we study how noise in the ex-

tracted prior influences our algorithm’s capability. Here

increasing noise means that the robot’s extraction of

the human’s hand trajectory is farther from the actual

trajectory that the human followed. For each task we

carry out a series of 50 trials. Since this simulation is

designed to isolate the impact of noise on our explo-

ration scheme, we do not include the residual network

during these trials.

Our findings (refer to Figure 7) reveal that VIEW

can use exploration to overcome an incorrect prior. For

noise variance between 0.05m and 0.15m, the robot is

able to successfully imitate the simulated human demon-

stration in almost 100% of the trials. However, as the

prior is distorted farther away from the correct trajec-

tory, the performance of VIEW eventually decreases. At

a noise variance of 0.2m we observed a notable decrease

in the success rate. This observation aligns with our ex-

pectation that larger distortions lead to longer search

times, potentially resulting in timeouts before solutions

are found. This pattern is also evident in the number

of exploration rollouts required for convergence: in gen-

eral, the more noise in the prior the more exploration

rollouts the robot needed to correct its waypoints. Fi-

nally, we note that the number of waypoints can impact

performance: tasks involving more waypoints (move)

generally required more rollouts than tasks with fewer

waypoints (pick and push). In practice, this simulation

suggests that VIEW’s exploration steps are critical to

success, and the robot can use exploration to overcome

errors in its initial guess of the correct trajectory.

5.2 Impact of Trajectory Compression

In our second simulation we assess the importance of

trajectory compression within our algorithm. In stead

of our proposed compression algorithm, simpler meth-

ods are also possible: for instance, we could simply

sample the demonstration at a reduced rate, and use

the sampled points as the initial trajectory (e.g., down-

sample the video every 100 frames). Here we compare

the impact of this alternative method against our com-

pression algorithm.

To generate these alternative compressions, we first

distort the correct initial trajectory using a noise vari-

ance of 0.15m. We then resample this modified demon-

stration at a fixed sample rate. We tested sampling

rates from 20Hz to 5Hz. Our original demonstrations

comprised approximately 40 waypoints: hence, the com-

pression could range from 40 waypoints at the highest

sampling rate to 10 waypoints at the lowest sampling

rate. We did not sample lower than 10 waypoints using

a fixed sampling rate because this caused the trajectory

to skip critical waypoints, such as the pick point. Sim-

ilar to the previous subsection, we assessed the impact

of compression using the success rate and the number

of rollouts required for convergence across 50 trials.

Our results, depicted in Figure 8, provide two im-

portant outcomes. First, as the number of waypoints in

the robot’s trajectory increases (higher sampling rate),

the number of rollouts required for convergence also

rises. This suggests that compression is indeed impor-

tant — we can accelerate the robot’s visual imitation

learning by focusing on a smaller number of waypoints.

Second, using simplistic compression algorithms that

down-sample the demonstration at a fixed rate perform

worse than our VIEW approach. The key difference here

is that sampling at a fixed rate may cause the robot
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Fig. 8 Simulation results examining the impact of trajectory compression. Within VIEW we compress the prior trajectory to
minimize the number of waypoints while maximizing the accuracy of the compressed trajectory. We compare this method with
an alternative approach in which the prior is sampled at a lower frequency to limit the number of points in the trajectory. We
vary the sampling frequency of the prior trajectory to be 5Hz, 10Hz, or 20Hz. The plot on the left shows the average number
of rollouts it takes to learn each task over 50 trials, and the shaded region indicates less than 20 minutes of training time. The
plot on the right shows the success rate for each task across 50 trials, and the shaded region shows a success rate higher than
80%. The bars indicate standard error of the mean.

Fig. 9 Simulation results examining how separating the waypoints into grasping and manipulation phases affects performance.
Under VIEW the robot autonomously splits the task into separate parts: first the robot learns to grasp the object, and then it
learns how to manipulate that object and complete the task. We compare this division against a unified approach that solves
the entire task simultaneously. We measure the average number of rollouts taken to solve the task (Left) and the success rate
(Right) over 50 trials. The shaded regions indicate less than 20 minutes of training time and over 80% success rate, respectively.
The bars indicate standard error of the mean.

to miss a critical point along the demonstration (such

as the frame where the human grasps the cup). Using

VIEW, the robot minimizes the number of waypoints,

while also ensuring that those waypoints retain critical

aspects of the demonstration.

5.3 Impact of our Exploration Approach

In our third simulation we investigate the effectiveness

of our exploration strategy. As an alternative to our

proposed exploration strategy, we examine the perfor-

mance of a unified optimization approach. This base-

lines does not separate task into grasp and manipula-

tion phases; instead, it performs Bayesian Optimization

to de-noise the entire trajectory. We maintain the noise

level at 0.15m, and evaluate success rates and conver-

gence rollouts for across 50.

The outcomes of this experiment are depicted in

Figure 9. As anticipated, we observe a substantial re-

duction in success rates when the waypoints are not

split into grasping and manipulation phases. The high-

est success rate achieved without splitting is approxi-

mately 70% for the push task, whereas our segmented

approach with VIEW achieves a minimum of 92% on

the same task. VIEW also decreases the number of en-

vironmental rollouts required for convergence. Finally,

we noticed that these results are impacted by the num-

ber of waypoints in the trajectory. For instance, in the

move task — which has four waypoints instead of the

three in pick and push — the success rate of the base-

line approaches zero. These results indicate that forgo-

ing waypoint segmentation during exploration not only

leads to inferior performance, but also fails to scale ef-

fectively with an increasing number of waypoints.
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Fig. 10 Simulation results for VIEW with and without the residual. We examine if the robot can utilize previous experiences
to more rapidly imitate new tasks. In this simulation we sample 50 random locations from the robot’s workspace and their
corresponding distortions from a noise matrix (Equation (8)). We then use these samples to train a residual network that de-
noises the distorted prior. The plots above compare the performance of our approach with and without the usingthis residual.
(Left) The number of rollouts taken to solve the task averaged over 50 trials. We also list the percentage decrease in rollouts
when the residual is present. (Right) The success rate for each task. The bars indicate standard error of the mean.

5.4 Impact of Residual

In our final simulation, we assess how the residual net-

work can accelerate the robot’s learning, contrasting it

with previous simulations where each task or demon-

stration was treated independently. Earlier, we used

Gaussian noise to introduce various distortions, while

keeping the cup’s location fixed to ensure consistent

analysis — only the robot’s initial trajectory was mod-

ified. However, Gaussian noise is unsuitable here, as

it would produce inconsistent offsets at each waypoint

for the same object in the same location. To model a

more consistent offset similar to ηstable in real-world

conditions, we apply a nonlinear noise matrix to in-

troduce consistent distortions across the robot’s entire

workspace:

η = tanh
ξ − C
λ

(8)

We utilize tanh to introduce distortions into the tra-

jectory waypoints, adjusting their positions based on

their proximity to a centroid (C). The degree of dis-

tortion is modulated by the regularizer λ. This noise

is then added to the demonstration to get a distorted

initial trajectory ξh. We adjust the location of C and

the value of λ to ensure that the distortions range from

4cm to 30cm across all waypoints. To mitigate against

any bias, we do not use a fixed cup location; instead, we

sample the cup’s location from a uniform distribution

across the table, and then collect demonstrations for

each task. We gather a total of 50 random demonstra-

tions from the environment, each distorted via the noise

matrix, to form our dataset. Specifically, our dataset D
for training the residual consists of 50 pairs of initial

trajectories ξh and their corresponding ground truths

ξ∗. Our algorithm’s performance — with and without

the integration of the residual network — is then eval-

uated across 50 new and unexplored cup locations for

each task.

Our results are illustrated in Figure 10. Across all

tasks, VIEW with the residual demonstrated the abil-

ity to few-shot learn new object locations. We observed

a reduction of over 40% in the number of rollouts re-

quired for the robot to learn each task. Indeed, VIEW

with the residual network needed fewer than 10 trials

on average to learn the correct behavior from distorted

input trajectories. These results suggest that VIEW is

not only effective when learning from scratch; we can

also leverage the tasks that VIEW learned across pre-

vious video demonstrations to accelerate learning on a

new video demonstration in the same workspace.

6 Experiments

In the previous section we explored the components of

VIEW through an ablation study in a simulated envi-

ronment. In this section we now test our overall method

in the real-world with human video demonstrations. We

apply VIEW on video demonstrations for various tasks

such as picking up a cup or moving a basket. To see

videos of these demonstrations and VIEW’s learning

process, visit: https://collab.me.vt.edu/view/

Tasks. Our real-world tasks span different skills and

objects. We focus on three primitive skills — push, pick,

move (Figure 11 shows a demonstration for each skill).

A full list of the objects used in our experiments is

found in the Appendix: these objects include household

items such as foods, cups, and containers. We start with

simple tasks where the robot must learn the primitive

skills in Uncluttered environments where no other items

are present. Next, we provide video demonstrations in

https://collab.me.vt.edu/view/
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Fig. 11 Manipulation tasks from our experiments. People (including the authors and external participants) provided video
demonstrations of three fundamental skills necessary for more complex tasks [45]: push, pick, move. Here we show examples
frames where VIEW detected the human hand and the intended object, i.e., the object human is interacting with. VIEW used
these frames to extract a prior trajectory for the human hand and object.

Cluttered settings with multiple objects, and the robot

must learn to imitate the demonstrated task despite

this environmental clutter.

In Uncluttered tasks we test all three fundamen-

tal skills. However, in Cluttered tasks we test only the

Move skill: here the robot must reach for and move

the correct object while avoiding and ignoring the en-

vironmental clutter. Different objects may be placed

close together in the environment to visually saturate

the robot’s camera or constrain the grasp locations.

Our method can scale to arbitrarily long tasks that

involve manipulating multiple objects, as shown in our

supplemental videos. However, for the purposes of this

experiment, we only focus on single object manipula-

tion tasks. Our aim is to test VIEW’s ability to imitate

manipulation tasks from a single video demonstration,

and to compare VIEW to relevant baselines.

Baselines. Our primary baseline is WHIRL [3], a

state-of-the-art method for visual imitation learning from

human demonstrations. However, our implementation

of WHIRL differs slightly from the original method.

Within the original work, WHIRL calculates rewards

by comparing agent-agnostic representations of the hu-

man demonstration and robot interaction (similar to

VIEW). WHIRL finds this agent-agnostic representa-

tion by inpainting the human and the robot from the

videos using Copy-Paste Networks [34], and then using

the action-recognition model of [42] to calculate its rep-

resentation. In our experiments, however, Copy-Paste

Networks could not reliably inpaint the robot, despite

extensive fine-tuning on a custom dataset3. To ensure

a fair comparison, we replaced WHIRL’s original re-

ward model with our object-centric reward model from

3 See the Appendix for more details
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Section 4.2. This substitution is reasonable as our re-

ward model provides more explicit feedback by directly

comparing target object movements rather than using

high-dimensional action representations, as in the origi-

nal WHIRL. The rest of the WHIRL algorithm matches

the original manuscript.

Our other experimental baselines are ablations of

our approach. At one extreme we have Prior, a method

that extracts the human hand trajectory from the video

demonstration and then replays that trajectory on the

robot arm. This corresponds to VIEW without any ex-

ploration or residual. In practice, Prior will only suc-

ceed if the initial trajectory the robot extracts is suffi-

cient to successfully imitate the task. At the other ex-

treme we tested ours-BO, an ablation of VIEW that

leverages a different exploration scheme. ours-BO is a

variant of VIEW that does not use the QD algorithm:

instead, the robot employs Bayesian Optimization to

separately identify the grasp and match the human’s

behavior. Finally, when the robot is learning multi-

ple tasks, we also test ours-residual. This is our full

VIEW algorithm that leverages previously solved tasks

to improve its prior extraction.

Experimental Setup and Procedure. Experiments

were conducted on a Universal Robots UR10 manip-

ulator with 6 Degrees-of-Freedom. The human’s video

demonstrations were recorded with a RealSense D435

RGB-D camera at 60 frames per second. We also recorded

the robot’s interactions with the environment as it it-

eratively tried to imitate the demonstrated behavior.

We collected 13 video demonstrations across all tasks,

where 9 were in Uncluttered environments and 4 were in

Cluttered environments. For the Uncluttered tasks the 9

total demonstrations were divided into 3 videos for each

skill — move-uncluttered, pick-uncluttered, and push-

uncluttered. The 4 videos in four different Cluttered en-

vironments all demonstrated the same skillmove-cluttered.

We conducted three trials on the robot for every demon-

stration, totalling 39 trials per method.

6.1 Results

Uncluttered Tasks. The results from our experiments

on Uncluttered tasks are shown in Figure 12. These

plots display the results across the two phases of each

task: the success rate for learning to grasp the object,

and the success rate for learning to correctly manipu-

late that object. The robot is said to have succeeded

in grasping if it was able to pick up the object. The

definition of successful task completion varied between

the different tasks: for move-uncluttered, the task was

considered a success if the robot placed the object close

to the same location as the human. In Pick-uncluttered,

the robot was successful it if grasped the target object

and lifted it off the table, while in push-uncluttered, the

robot successfully completed the task if it pushed the

item to the human’s demonstrated location.

We observed that the prior trajectory was typically

distorted by 10-15 cm from the correct pick location,

and simply replaying the trajectory extracted from the

human’s video demonstration was consistently unsuc-

cessful. Across all tasks, Prior was not able to either

grasp or manipulate the target object. The state-of-

the-art visual imitation learning baseline WHIRL was

more effective, particularly in learning to grasp the tar-

get item. But our proposed VIEW algorithm surpassed

this baseline, reaching more than twice the success rate

of WHIRL for the push task and achieving a 100% suc-

cess percentage in the pick task. For push-uncluttered

and move-uncluttered, WHIRL was able to grasp the

target object in some trials, but it did not learn to cor-

rectly manipulate that object within the limit of 100

rollouts in the environment (roughly 45 minutes). For

these same tasks our VIEW algorithm reached an 80%

success rate, learning to replicate the human’s video

demonstrations in less than 30 minutes4.

Finally, we compared the performance of ours-BO

and ours. Across the board, we found that ours-BO

is less effective at visual imitation learning than our

full VIEW algorithm, and in the pick-uncluttered envi-

ronment this baseline performs significantly worse than

WHIRL. These results highlight the importance of our

high-level and low-level QD search algorithms for ex-

ploring how to grasp the object: without the ability to

learn effective grasps, ours-BO struggles to imitate the

rest of the manipulation task.

Cluttered Tasks. We present the results for the Clut-

tered task trials in Figure 13. As before, the plot on the

left shows the grasp success rate, and the plot on the

right shows the full task success rate. Our results fol-

lowed the same trends as in Uncluttered tasks. Directly

executing the extracted prior never led to success for ei-

ther grasping or manipulation. The baselines WHIRL

and ours-BO were roughly similar, reaching success

percentages of less than 50% across a maximum of 100

real-world rollouts (roughly 45 minutes). We were not

surprised that WHIRL struggled with cluttered envi-

ronments: it does not split the exploration into sepa-

rate parts for grasping and manipulation; even if the

4 WHIRL was shown to work for similar tasks in the orig-
inal paper [3]. However, we were unable to reproduce these
results. We acknowledge that we replaced WHIRL’s original
reward model with our own agent-agnostic reward. However,
this new reward provides more explicit feedback about the
task and exploration. See Appendix for more details.
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Fig. 12 Experiment results for Uncluttered tasks. (Left) How frequently the robot grasped the object from the human’s video
demonstration. (Right) How frequently the robot learned to imitate the human’s video demonstration. Results are calculated
across 9 separate video demonstrations and 3 trials per video demonstration. Note that the results for pick are the same in
both grasping and task exploration, since here the objective is just to pick up (i.e., grasp) an item.

robot grasps the object in an interaction, it can fail to

grasp it again in the subsequent repetitions5. Overall,

our VIEW method was effective across the cluttered

settings, grasping and manipulating the correct object

to match the human’s video demonstration in almost

100% of the trials. VIEW solved each task in less than

30 minutes.

Learning from Multiple Tasks. In Figure 14 we

summarize the results from our final experiment. This

experiment focused on how VIEW can leverage the

tasks it has previously solved to improve its prior and

accelerate its learning on new tasks. To quantify this ac-

celeration, we measured the number of rollouts it took

for the robot to successfully imitate a video demonstra-

tion in the Cluttered environment. Both ours and ours-

residual used VIEW, but ours-residual included the

full VIEW algorithm with the residual component. We

found that for 3 out of the 4 Cluttered demonstrations,

applying the residual significantly reduced the number

of interactions needed to learn the task (roughly 25%

fewer rollouts). Interestingly, for the fourth demonstra-

tion the residual actually had the opposite effect, and

5 It is important to note that our reward model provides
explicit feedback about the tagged object: the rewards do not
change if WHIRL moves any object other than the tagged ob-
ject. In contrast, the original reward model in WHIRL com-
pares the agent-agnostic action embeddings. This would pose
a significant challenge in a cluttered environment since the
robot would still be executing the right behavior, but main-
pulating the wrong object. For instance, if the robot were
to move the kettle instead of the cup, it performs the same
action — moving — and would receive a high reward even
though it actually fails to complete the task.

Fig. 13 Experiment results for Cluttered tasks. Here the en-
vironment contained multiple extraneous items in addition
to the target object the human manipulated. (Left) How fre-
quently the robot learned to grasp the correct item. (Right)
How frequently the robot correctly imitated the entire video
demonstration. These results were taken across 4 separate
video demonstrations and 3 trials per video demonstration
(for a total of 12 datapoints).

slowed down the robot’s learning. On further examina-

tion, we believe this decrease in performance occurred

because the initial hand trajectory ξh lied outside the

distribution of the data used to train the residual. Since

the residual had not seen a demonstration that operated

in the same part of the workspace, it was not able to

de-noise the prior and accelerate the robot’s learning.

This suggests that — while the residual can be use-

ful — it should be carefully applied. Learning a robust

residual necessitates an expansive dataset that includes

waypoints spanning the workspace.
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Fig. 14 Experiment results for learning from multiple tasks.
Here the robot has previously solved the Uncluttered tasks,
and it is now trying to learn a new Cluttered task. We com-
pare our VIEW algorithm without the residual (ours) to our
full VIEW algorithm with the residual (ours-residual). There
are a total of four video demonstration for different Clut-
tered tasks. We plot the average number of rollouts needed
for VIEW to solve each of these tasks. ∆ is the percentage
change in the number of rollouts with and without the resid-
ual. The bars indicate standard error of the mean.

7 Limitations and Future Work

Our method has demonstrated the capability to expe-

dite the learning process from human demonstrations,

significantly reducing the required time from several

hours [3] to less than 30 minutes. However, these re-

sults are achieved with certain limitations that present

opportunities for future enhancements.

One primary limitation of our approach is its in-

ability to incorporate orientation within the extracted

trajectories. This restricts VIEW from handling tasks

where orientation is crucial, such as pouring. The lim-

itation stems from our discretization process for grasp

exploration, which uses Centroidal Voronoi Tessella-

tions to identify potential grasp points. This process

does not extend to non-affine elements, such as orien-

tation. Addressing this limitation in future work could

involve incorporating Euler-Rodrigues formulas [12] to

handle orientation changes in an affine space, allow-

ing VIEW to extend to tasks requiring both positional

and rotational considerations. By integrating orienta-

tion, the system could more effectively perform complex

manipulation tasks.

Another limitation is VIEW’s dependence on a fixed

camera pose between the human demonstration and the

robot’s rollouts. Since our reward computation relies on

object detection and pixel-based comparisons of object

centroid locations, consistency in camera setup is es-

sential to ensure accurate alignment between human

demonstrations and robot actions. A promising direc-

tion to address this limitation is to integrate an object

detector capable of pose estimation, such as PoseCNN

[11] or Bundle-SDF [75], which would allow for pose-

based rather than purely pixel-based comparisons. By

transforming object poses into a world-coordinate sys-

tem that is invariant to camera angles, VIEW could

adapt to scenarios with variable camera positions, fur-

ther broadening its applicability.

Lastly, VIEW relies on environmental consistency

between the demonstration and learning environments,

which constrains the approach to task-specific setups.

For example, if a demonstration shows a human pick-

ing up a cup from a specific location, the robot learns

to perform the action from that exact position; any

change in object location requires a new demonstration.

To overcome this, future work could consider defining

waypoints relative to object positions rather than in

fixed 3D coordinates. Combined with a pose-based re-

ward function, this would enable the system to perform

tasks even if object positions change.

Despite these limitations, our method presents a

promising step toward one-shot visual imitation learn-

ing. In addition, our method can also serve as a trans-

lation layer for downstream policy learning. Recall that

a key limitation of policy learning approaches is the

requirement for state-action pairs. VIEW can quickly

generate these state-action pairs from video demonstra-

tions, and with a robust residual network, we believe it

can do so without the need for exploration. These state-

action pairs could then be used in behavior cloning or

a policy learning frameworks to learn more adaptable

policies. This integration would enable VIEW to data-

efficiently translate human demonstrations into imita-

tion learning policies that can respond to changes in the

world state, serving as a foundational layer for broader

task generalization.

8 Conclusion

State-of-the-art visual imitation learning methods rely

on intricate architectures to manage the complexities

present in video demonstrations. This paper introduces

an alternative framework designed to streamline the

learning process by compressing video data and hon-

ing in on crucial features and waypoints. We show that

by concentrating on these essential aspects, robots can

more rapidly learn tasks from human video demonstra-

tions. Our method, VIEW, incorporates distinct mod-

ules for (a) generating a condensed prior that captures

the key aspects of the human demonstrator’s intent, (b)

facilitating targeted exploration around the waypoints

in the prior through a division into grasp and task ex-

ecution phases, and (c) employing a residual model to
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enhance learning efficiency by drawing on insights from

previously completed tasks.

Through an ablation study in a simulated environ-

ment, we examine the contribution of each module to

VIEW’s overall efficacy. Our method achieves over 80%

success rate when using our proposed trajectory com-

pression, and it achieves over 90% success rate with our

exploration approach. Further, using our residual net-

work leads to a dramatic decrease in the number of roll-

outs (more than 40%) needed to solve each task. Sub-

sequent real-world experiments, utilizing videos of hu-

man demonstrations, further validate our method’s ca-

pability to effectively learn from such demonstrations.

In particular, our method achieves over 80% success

rate in Uncluttered tasks and achieves 100% success

rate in Cluttered tasks, outperforming the state-of-the-

art baseline. The combined results from our simula-

tion studies and real-world testing indicate that VIEW

can efficiently learn tasks demonstrated using a single

video, typically requiring under 30 minutes and fewer

than 20 real-world trials. Additionally, we advance the

capabilities of human-to-robot visual imitation learn-

ing by showing that VIEW can learn from arbitrarily

long video demonstrations involving multiple object in-

teractions. These findings are illustrated in our supple-

mental videos, available here: https://collab.me.vt.

edu/view/
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A Appendix

A.1 Implementation Details

A public repository of our code can be found here:
https://github.com/VT-Collab/view

Data collection. In our experiments, we use the Intel Re-
alSense D435 RGB-D camera to capture video demonstra-
tions, recording both RGB and depth data at 60 frames per
second for each demonstration and rollout. While the depth
data can be noisy, the Intel RealSense SDK offers several fil-
ters to enhance quality; we found that the hole-filling filter
provided the most significant improvement. Despite this fil-
tering, noise still introduced deviations of 5 to 19 cm from the
ground truth waypoints. All our experiments incorporated

https://github.com/VT-Collab/view
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Fig. 15 Objects manipulated in our real-world experiments.
(From left to right) We use a bottle of bleach, a kettle, a
mug, a banana, an apple, a bottle of mustard, and a basket.
These seven distinct items were systematically selected for
assessment based on their varying shapes, sizes, and colors to
provide a comprehensive evaluation of our algorithm.

this level of noise in the extracted waypoints, and our method,
VIEW, effectively denoised these waypoints to achieve reli-
able results.

Hand trajectory extraction. In line with the methodol-
ogy described in WHIRL [3], we utilize the 100 Days of Hands
(100DOH) detector from https://github.com/ddshan/hand_

detector.d2 for identifying hand-object contact points. For
wrist detection, we integrate this with FrankMocap, as doc-
umented in Rong et al. [54], without any model fine-tuning.
The implementation for FrankMocap can be found here: https:
//github.com/facebookresearch/frankmocap. To obtain com-
pressed trajectories, we combine the output of the FrankMo-
cap model with SQUISHE. We develop our own version of
SQUISHE based on the description provided in [44]. Our im-
plementation can be accessed in the code repository.

Object trajectory extraction. To identify objects within
the scene, we use Mask R-CNN, as detailed by He et al. [22],
through its implementation in Detectron2 (https://github.
com/facebookresearch/detectron2). Following the method-
ologies outlined in [19], we initially pretrain our model using
the Nvidia Falling Things dataset [71] and the DoPose-6D
dataset [18]. We then finetune the model on a custom dataset
containing 21 objects, with a subset of 7 being directly rele-
vant to our final evaluations. This subset includes standard
objects from the YCB object dataset [7] and others that are
commonly found in kitchen environments. The complete list
of objects used in our evaluation is shown in Figure 15.

Object detection during runtime. Given the challenges
of ensuring object visibility and detection in every frame,
we detect the object’s location only at key waypoints iden-
tified through compression with SQUISHE, interpolating for
all other points along the trajectory. This approach allows us
to perform object detection at select locations, significantly
reducing the computational load during runtime.

Residual network. For our residual network, we employ a
fully connected multi-layer perceptron with two hidden layers,
utilizing ReLU as the activation function and mean squared
error (MSE) for loss calculation. We use the Adam optimizer
and train the network for 100 epochs. The initial learning rate
is set at 0.1, with a decay factor of 0.15. Our network takes
each waypoint as an input and then outputs the corrected

waypoint. We use the same residual network across multiple
tasks and multiple objects. For more detailed information on
our training parameters, please refer to our code repository.

Robot Experiments. In our robot experiments, during the
grasp exploration the robot searches for a good grasp loca-
tion. At the end of each rollout, proctors manually reset the
objects to their original positions ensuring minimal errors in
the object positions. Once the robot identifies a successful
grasp location, the environment reset is automated, with the
robot itself returning the item to its original position. The
robot movement in these exploration rollouts are executed
with a compliance controller to present any damages to the
robot or the objects.

A.2 Challenges with WHIRL

Because of the lack of publicly available implementations of
WHIRL, we developed our version based on the algorithms
provided in WHIRL’s publication [3]. As described, we used
a four-layer MLP, implemented as a Variational Autoencoder
and optimized via KL divergence loss. Initially — consistent
with the guidelines in WHIRL’s manuscript — we employed
Copy-Paste Networks for inpainting [34] and the moment
model from Monfort et al. [42] for calculating rewards.

However, during our experiments, we encountered two
major challenges with WHIRL (see Figure 16). The first issue
was the inconsistency observed in the video inpainting perfor-
mance, where the Copy-Paste Network failed to fully remove
the robot from several frames (See Figure 16 Top). This in-
consistency persisted even after we fine-tuned the model on
400 custom images of our robot. Having consistent images
with the human and the robot removed are particularly crit-
ical because WHIRL’s exploration strategy relies heavily on
comparing embeddings across frames. Due to the erratic in-
painting results, the robot often converged to suboptimal po-
sitions, distant from the target object (See Figure 16 Bottom
Left). The second issue pertained to the rewards linked with
task completion. There was a marked lack of differentiation
in rewards between trajectories where the robot only grasped
the object and those where it successfully completed the task
(see Figure 16 Bottom Right). This similarity in rewards of-
ten caused the robot to become stuck in a local minimum,
proficient at object pickup but failing to complete the rest of
the manipulation task.

In response to these issues, we replaced the reward model
from WHIRL with the reward model described in Section 4.2.
While WHIRL calculates exploration rewards based on the
variance in frame embeddings and task rewards through the
difference in video embeddings, our method takes a different
approach. We explicitly compute exploration rewards using
changes in the object’s position and gauge task completion
by measuring the object’s proximity to the demonstrated tra-
jectory. Our reward structure therefore capitalizes on direct
and pertinent information (i.e., the location of the target ob-
ject) rather than an indeterminate high-dimensional represen-
tation. We conducted a limited set of experiments to ensure
that reward responses from our model were comparable to
those from the original moment model. We believe that this
modification does not fundamentally alter the functionality
of WHIRL, and is a reasonable baseline for comparison.

A.3 Algorithms

https://github.com/ddshan/hand_detector.d2
https://github.com/ddshan/hand_detector.d2
https://github.com/facebookresearch/frankmocap
https://github.com/facebookresearch/frankmocap
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
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Fig. 16 Challenges with WHIRL Evaluation. (Top) As described in [3], we utilized Copy-Paste Networks [34] for the purpose
of video inpainting, with the aim of removing both the human demonstrator and the robot arm from the video frames. This
process is critical for enabling the comparison of frames through moment models [42], which in turn facilitates the computation
of agent-agnostic rewards. However, in our evaluations we encountered consistency issues with the inpainted images, leading
to highly variable reward signals. (Bottom Left) The inconsistency in reward signals led to scenarios where the robot received
high exploration rewards without actually moving the object. This is problematic because the robot relies on these rewards
to identify waypoints that are near the object, which are necessary for successful grasping. In contrast, WHIRL with our
reward model produces low exploration rewards when there is no object movement, and rewards increase significantly only
when the object is displaced. This variability in the WHIRL reward model often caused the robot’s learning trajectory to
converge prematurely at a suboptimal point, usually far from the target object. (Bottom Right) When the robot managed to
overcome the variability in exploration rewards and successfully grasped the object, we observed that the reward difference
between just grasping the object and completing the entire task was minimal. WHIRL with our reward model provided a
clearer distinction between these different phases of the task. The lack of clear reward differentiation in WHIRL’s reward
model frequently hindered the robot’s ability to fully learn the task, often resulting in the robot only learning to pick up the
object without completing subsequent steps. Based on these results, in our experiments from Section 6 we used WHIRL with
our proposed reward model instead of WHIRL with its original reward model.
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Algorithm 1 VIEW

Input: Video of human interaction V

Residual network Φ

Dataset of previous corrections D
Output: Successful robot trajectory ξr

Updated Residual network Φ

1: ξh = ExtractHandTraj(V )

2: ξo, tag = ExtractObjectTraj(V , ξh)

3: ξhc = ξh + Φ(ξh)

4: ξhgrasp, ξ
h
task = DivideTraj(ξhc )

5: ξ∗grasp = GraspExplore(ξhtask, ξ
o, tag)

6: if ξ∗grasp is success then

7: ξ∗task = TaskExplore(ξhtask, ξ
∗
grasp, ξ

o, tag)

8: if ξ∗task is success then

9: ξ∗ = CombineTraj(ξ∗grasp, ξ
∗
task)

10: Add (ξh , ξ∗) to D
11: Retrain Φ on D
12: end if

13: end if

Algorithm 2 Object Trajectory Extraction

Input: Video of human interaction V

Depth information Dh

Human hand trajectory ξh

Object detection model OD

Set of Anchor boxes A

Camera intrinsic and extrinsic parameters Cc
r

Output: Object tag

Object trajectory in pixel space ζoh
Object trajectory in 3D space ξoh

1: Initialize OD

2: Initialize object count

3: for contact information ct in ξh if ct = True do

4: vt = ExtractVideoFrame(V, ct)

5: for Anchor box α in A do

6: objects = OD(α)

7: Update object count

8: end for

9: end for

10: tag = Max(object count)

11: ξoh, ζ
o
h = ExtractObjectTraj(V ,tag)

12: return ξoh, ζ
o
h, tag

13:

14: function ExtractObjectTraj(V , tag)

15: Initialize an empty lists ξh, ζh
16: for Video frame vt in V do

17: poxt
, poyt

= OD(vt, tag)

18: Append (poxt
, poyt

) to ζh
19: δot = Dh(poxt

, poyt
)

20: xo
t , y

o
t , z

o
t = Cc

r(p
o
xt
, poyt

, δot )

21: Append (xo
t , y

o
t , z

o
t ) to ξoi

22: end for
23: return ξh, ζh
24: end function
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Algorithm 3 Grasp Exploration

Input: Prior trajectory of grasping ξhgrasp
object location in robot coordinates ωo

1: Initialize δ, ϵ, pexplore
2: Initialize flag local = False

3: Initialize an empty list Ωr
visited

4: Get the point where human grasps the object ωh
grasp

from prior ξhgrasp
5: Define bounding box B that circumscribes the

points ωo
grasp −∆ĵ and ωh

grasp +∆ĵ

6: Sample random points from B and initialize the set

Ωr
unvisited = K-Means(points)

7: Initialize Bayesian optimizer BO

8:

9: function Ask

10: Generate p from uniform distribution [0, 1]

11: if p < pexplore then

12: Sample high-level waypoint ωr from

Ωr
unvisited using Equation (5)

13: Change flag local = False

14: return ωr

15: else

16: Sample high-level waypoint from Ωr
visited

with probability distribution from Equation (6)

17: Start low-level search by defining a bounding

box around this waypoint with limits ϵ

18: Query BO for ωr

19: Change flag local = True

20: return ωr

21: end if

22: end function

23:

24: function Tell(ωr
i , Ri)

25: if local then

26: Update BO with ωr
i , Ri

27: else

28: Remove ωr
i from Ωr

unvisited

29: Add (ωr
i , Ri) to Ωr

visited

30: end if

31: end function

32:

33: while grasp is not successful do

34: Sample a waypoint ωr = Ask

35: Execute trajectory ξr =

36: {ωr
t1 , ω

r
t2 , . . . ω

r, ωr
grasp+1}

37: Get the reward R using Equation (1)

38: Inform the explorer Tell(ωr, R)

39: end while

Algorithm 4 Task Exploration

Input: Prior trajectory of task ξhtask
1: Define bounding box for each waypoint ωr ∈ ξrtask
2: Initialize a separate Bayesian optimizerBO for each

waypoint in task

3:

4: function Ask

5: Initialize an empty list ξrtask
6: for ωh

i ∈ ξhtask do

7: Query BO for ωr
i

8: Add ωr
i to ξrtask

9: end for

10: return ξrtask
11: end function

12:

13: function Tell(ξrtask, R)

14: for i = 1, . . . , n do

15: Update corresponding BO with ωr
i ∈

ξrtask, Ri ∈ R

16: end for

17: end function

18:

19: while task is not successful do

20: Sample trajectory ξrtask = Ask

21: Execute trajectory ξrtask in environment

22: Get the reward R for each waypoint in the tra-

jectory using Equation (1)

23: Inform the explorer Tell(ξrtask, R)

24: end while
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